Communication: Same and Different. Classification.

1. Describe a counting problem	1. Counting problems want to know how many things can be generated using a large set of values. 2. They allow repeats. 3. Order matters. 4. E.g., How many 4 number PINs exist?
2. Describe a factorial problem.	1. Factorial problems want to know how many ways a small set of values can be arranged. 2. Order matters. 3. E.g., How many ways can 4 people line up?
3. Describe a permutations problem.	1. Permutations want to know how many ways SOME OF a set of values can be arranged. 2. Order matters. 3. Pick. 4. E.g., How many ways can you find a $1^{\text {st }}, 2^{\text {nd }} 3^{\text {rd }}$ place finisher from a race of 8 people?
4. Describe a permutations with restrictions problem.	1. A small set of values is arranged, but restrictions are place on some of the values. 2. Order matters. 3. E.g., How many ways can 6 people line up if Adisa must be first?
5. Describe a permutations with repeats problem.	1. A small set of values is arranged, but some of the values are repeated. 2. Order matters. 3. If you have all the values, there is a formula. If only some of the values, you must use cases. 4. E.g., How many ways can you arrange 3 letters of CANADA?
6. Describe a circular permutations problem.	1. A set of values is arranged in a circle. 2. Order matters. 3. E.g., How many ways can 8 gemstones be arranged around a ring?
7. Describe a combinations problem.	1. A sub-group is selected from a larger group. 2. Order does not matter. 3. Choose. 4. E.g., You choose a group of 4 from a 20 member club?

Knowledge: Formulas

1.	What is the formula for $\mathrm{n}!$	$\mathrm{n} \times(\mathrm{n}-1)!$
2.	What is the formula for n things arranged in a circle?	$(\mathrm{n}-1)!$
3.	What is the formula for $\mathrm{P}(\mathrm{n}, \mathrm{r})$?	$\frac{n!}{(n-r)!}$
4.	What is the formula for $\mathrm{C}(\mathrm{n}, \mathrm{r})$?	$\frac{n!}{(n-r)!r!}$
5.	What is the formula for factorials with repeats?	$\frac{n!}{a!b!c!}$
6.	What is the Excel formula for $\mathrm{C}(4,3)$	$=\operatorname{combin}(4,3)$
7.	What is the Excel formula for $\mathrm{P}(4,3)$	$=\operatorname{permut}(4,3)$
8.	What is the Excel formula for $5!$	$=$ fact(5)

