Theoretical Probability	$P(A)=\frac{n(A)}{n(s)}$	Mutually Exclusive Additive Principle	$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
Compliment $\quad P\left(A^{\prime}\right)=1-\mathrm{P}(\mathrm{A})$	Mutually Exclusive And	$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$	
Additive Principle$\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$	Conditional Probability.	$\mathrm{P}(B \mid A)=\frac{P(A \cap B)}{P(A)}$	
Independent And	$\mathrm{P}(\mathrm{A} \cap B)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$		the probability that B occurs, given that A has already happened

Factorial	$\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1)!$
Combinations	$C(n, r)=\frac{n!}{(n-r)!r!}$

Permutations in a circle ($n-1$)!
$\begin{aligned} & \text { Permutations } P(n, r)=\frac{n!}{(n-r)!} \\ & \text { Permutations with } \\ & \text { repeats, and all letters } \frac{n!}{a!b!c!}\end{aligned}$
$!b!c$!

Mean	Standard Deviation	Mean, Frequency Data	Standard Dev, Frequency Data
$\bar{x}=\frac{\sum x}{n}$	$\sigma=\sqrt{\frac{\sum(\bar{x}-x)^{2}}{n}}$	$\bar{x}=\frac{\sum x \times f}{\sum f}$	$\sigma=\sqrt{\frac{\sum f(\bar{x}-x)^{2}}{\sum f}}$

Normal Distribution	$z=\frac{x-\bar{x}}{\sigma}$	$\bar{x}=\frac{\sum x}{n}$	$\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
Uniform Distribution	$P(x)=\frac{1}{n} \quad \begin{aligned} & \text { min }=\text { lowest value you can roll. } \\ & \text { max }=\text { highest value you can roll. } \\ & n=\text { number of sides on the dice } \end{aligned}$	$E(x)=\frac{\min (x)+\max (x)}{2}$	
Binomial Distribution	$\begin{aligned} & P(x)=C(n, x) \times p^{x} \times q^{(n-x)} \\ & \mathrm{p}=\text { probability of a single event's success } \\ & \mathrm{q}=\text { opposite of } \mathrm{p} . \text { probability of single event's failure. } \\ & \mathrm{n}=\text { number of events } \\ & \mathrm{x}=\text { the specific number of successes } \end{aligned}$	$E(x)=\bar{x}=n \times p$	$\sigma=\sqrt{n p q}$
Geometric Distribution	$\begin{aligned} & P(x)=q^{x} p \\ & p=\text { probability of a success on a single trial } \\ & q=\text { opposite of } p . \text { probability of single event's failure. } \\ & x=\text { number of trials }-1 . \end{aligned}$	$E(x)=\frac{q}{p}$	
Hypergeometric Distribution	$\begin{aligned} & P(x)=\frac{C(a, x) \times C(n-a, r-x)}{C(n, r)} \\ & \mathrm{n}=\text { total number of things to choose from } \\ & \mathrm{r}=\text { total number of places to put them } \\ & \mathrm{a}=\text { number in the subgroup you are looking for } \\ & \mathrm{x}=\text { specific number from the subgroup on this trial } \end{aligned}$	$E(x)=\frac{r a}{n}$	

| Margins of | $E= \pm z \sqrt{\frac{p q}{n}}$ | Expected
 Error |
| :--- | :--- | :--- |$\quad E(X)=\sum \$ x \times P(x)$

