MDM4U Review Questions Day 2

Put your name on the scantron. Do it now.

Use a pencil. Erase fully. Bubbling and erasing errors are your mistakes, not the machine's.

A statistician cr and box and wl the same set of	reated this histogra hisker diagram fror data.	ım n	10 8 6			
She was measu	ring the number of		4			
servings of veg	etables that each of	ther				
subjects ate on	Dec 14, 2012.		0 - 1 - 2	$3 \ 4 \ 5$	6 7 8	
			•			•
			<u></u>			+►
			$1 \ 2$	$3 \ 4 \ 5$	6 7	8 x
11. What is the (Q1 on the above bo	x and whisker?				
(a) 1	(b) 2	(c) 3	(d)	4.5	(e)	8
12. What is the r	node on the above	diagrams?				
(a) 1	(b) 2	(c) 3	(d)	4.5	(e)	8
13. What is the r	nedian on the abov	e diagrams?				
(a) 1	(b) 2	(c) 3	(d)	4.5	(e)	8
14 What is the ()3 on the above bo	x and whisker dia	oram?			
(a) 1	(h) 2		പ്ര	45	ല്രി	8
(~) 1			(u)			0

	А	В	С	D	E	F	G	Н	I
1	Height	Age			Mean	Median	Mode	Minimun	Maximum
2	1.3	3		Height	2.0333	2	#N/A	1.3	3.1
3	1.5	5		Age	8.5	8	8	3	15
4	1.9	8							
5	2.1	8		х	Y	r	r^2	slope	y-intercept
6	2.3	12		Height	Age	0.97532	0.9512	6.720779	-5.1655844
7	3.1	15		Age	Height	0.97532	0.9512	0.141538	0.83025641

15. In the above spreadsheet, what formula would appear in the cell E2?

=median(A2:A7) (a)

=avg(B2:B7)(d)

=mean(A2:A7) (b)

(e) None of the previous.

=avg(A2:A7)(c)

16. In the above spreadsheet, what formula would appear in the cell H2?

=min(A2:A7) (a)

=smallest (A2:A7) (d)

(b) =m(A2:A7)

None of the previous. (e)

=minimum(A2:A7) (c)

17. In the above spreadsheet, what formula should appear in the cell F6?

- =r(A2:A7, B2:B7) (a) (d) (b) =r(B2:B7, A2:A7)
- =correl(B2:B7, A2:A7)
- =correlcoeff(A2:A7, B2:B7) (e)
- =correl(A2:A7, B2:B7) (c)

- 18. Which is not a characteristic of the normal distribution?
 - (a) It models the frequency and probability distributions of continuous random variables.
 - (b) It can be used to model a geometric probability distribution.
 - (c) The curve is symmetrical about the mean.
 - (d) The mean and median are equal.
 - (e) Approximately 68% for the data values are within one standard deviation.

19. On a	a normal disti	ibuti	on, what perce	entag	e of data falls v	vithin	two standar	d dev	riations of the mean?
(a)	13.5%	(b)	34%	(c)	95%	(d)	97%	(e)	99.7%
20. Assi	uming a norm	al dis	tribution, wha	at is F	P(z<1.73)?				
(a)	0.9554	(b)	0.9573	(c)	0.9582	(d)	0.9591	(e)	0.9664
21. Assi	uming a norm	al dis	tribution, wha	at is F	P(z > -1.45)?				
(a)	0.0735	(b)	0.0156	(c)	0.2983	(d)	0.3498	(e)	0.9265
22. Assi	uming a norm	al dis	tribution, wha	at is F	P(z > -1 and z <	0)?			
(a)	0.1587	(b)	0.3413	(c)	0.500	(d)	0.6587	(e)	0.8413
				. ,				.)	

23. The weight of adult male grizzly bears living in the wild in North America is approximately normally distributed with a mean of 220 kg and a standard deviation of 22 kg. How many standard deviations above the mean is a bear who weighs 250 kg?
(a) 0
(b) 1
(c) 1.2
(d) 1.23
(e) 1.36

- 24. Gina's doctor told her that the z-score for her blood pressure, as compared to the blood pressure of other women her age, is 1.50. Which of the following is the best interpretation of this standardized score?
 - (a) Gina's blood pressure is 1.50.
 - (b) Gina's blood pressure is 1.50 above the average blood pressure of women her age.
 - (c) Gina's blood pressure is 1.50 times the average blood pressure for women her age.
 - (d) Gina's blood pressure is 1.50 standard deviations above the average blood pressure of women her age.
 - (e) Only 1.5% of women Gina's age have a higher blood pressure than she does.

25. Which region of the normal distribution, $X \sim N(0,1)$, represents P(z>1)?

The next few questions consider the formulas in this spreadsheet:

A	В	С	K	L	М							
1 The l	Data:				The Analysis:							
2 6	9	10	3		Mean	8.5	Minimum	3	Q3	10	X	5
3 8	10	11	10		Standard Deviation	2.06	Q1	8	Maximum	11	Zscore	-1.7
4 9	9	9	8		Mode	9	Median	9	IQR	2	P(x<5)	0.0447
-												
28. In th	e ab	ove s	prea	dsheet. w	vhat formula shou	ld app	ear in the c	ell G3	?			
(a)	=st	:dev.i		:D4)		(d)	=sd(A2:D4))	•			
(b)	=st	dv(A	2:D4	·)		(e)	=standardd	, leviati	ion(A2:D4)		
(c)	=σ	(A2:I	04)									
			,									
29. In th	29. In the above spreadsheet, what formula should appear in the cell I3?											
(a)	(a) =quartile(A2:D4) (d) = $Q1(A2:D4)$											
(b)	=q	uarti	le1(A	2:D4)		(e)	=quartile.e	xc(A2	:D4, 1)			
(c)	=q	uarti	leone	e(A2:D4)								
30. In th	e ab	ove s	prea	dsheet, w	vhat formula shou	ıld app	ear in the c	ell M3	?			
(a)	=(I	42-G	2)/G	3		(d)	=zscore(G3	8, G2, N	M2)			
(b)	=ZS	score	(M2,	G2, G3)		(e)	=zscore(G2	2, G3, I	M2)			
(c)	=ZS	score	(G3,	G2, M2, t	rue)							
31. In th	31. In the above spreadsheet, what formula should appear in the cell M4?											
(a)	=n	orm.	aist(1	rue, MZ,	62,63J	(a)	=norm.dist	(MZ, (32, 63, true	ej		
(D)	$D = 1101 111.015(UUUE, 3M32, G2, G3) \qquad (E) = 1101 111(UUE, M2, G2, G3)$											
(C)	(c) = norm.dist(true, \$M\$2, \$G\$2, G3)											

32. How many ways can you spell the word snow travelling from top to bottom?

34.	Iden Bern	tify the dis oulli trials	tribu [:]	tion that repre	sent	s the number o	f failu	ires before you get a	succe	ess in a series of
	(a)	Normal	(b)	Binomial	(c)	Geometric	(d)	Hypergeometric	(e)	Uniform
35.	35. Identify the distribution that gives the discrete probability distribution of obtaining exactly x successes out of n Bernoulli trials.									
	(a)	Normal	(b)	Binomial	(c)	Geometric	(d)	Hypergeometric	(e)	Uniform
36.	6. Identify the distribution that is a very common continuous probability distribution often used in the natural and social sciences to represent real-valued random variables.									
	(a)	Normal	(b)	Binomial	(c)	Geometric	(d)	Hypergeometric	(e)	Uniform
37.	Iden	tify the dis	tribut	tion that has c	onsta	int probability.				
	(a)	Normal	(b)	Binomial	(c)	Geometric	(d)	Hypergeometric	(e)	Uniform
38.	38. Identify the distribution that is a discrete probability distribution that describes the probability of successes in draws, without replacement.									
	(a)	Normal	(b)	Binomial	(c)	Geometric	(d)	Hypergeometric	(e)	Uniform

This spreadsheet was created to simulate the number of times a person has to roll a dice until they get doubles. Recall that P(doubles) = 1/6.

	А	В	С	D	E	F	G	Н	I
1	Х	0	1	2	3	4	5	6	7
2	q^x	1	0.83333	0.69444	0.5787	0.48225	0.40188	0.3349	0.27908
3	р	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667	0.16667
4	P(x)=q^x*p	0.16667	0.13889	0.11574	0.09645	0.08038	0.06698	0.05582	0.04651

39. In the above spreadsheet, what formula should appear in the cell B2?

(a)	=(5/6)^0	(d)	=(5/6)^B1
(b)	=q^x	(e)	=\$A\$1^B1

(c) =1

40. In the above spreadsheet, what formula should appear in the cell B3?

(a)	=1-B2	(d)	=1/6
(b)	=0.16667	(e)	=\$A\$1

(c) =doubles()

41. In the above spreadsheet, what formula should appear in the cell B4?

(a)	=B2*B3	(d)	=\$B\$2*\$B\$3
(b)	=\$B\$2*B3	(e)	=B\$2*B\$3

(c) =B2*\$B\$3

42. Which formula finds the probability of a single event in a geometric distribution?

(a)
$$P(x) = C(n,x) \times p^{x} \times q^{(n-x)}$$
 (c) $P(x) = q^{x} p$ (e) $P(x) = n(q) \times n(p)$
(b) $P(x) = \frac{C(a,x) \times C(n-a, r-x)}{C(n,r)}$ (d) $P(x) = \frac{1}{n}$

43. From a carton of 24 eggs, of which 14 are cracked, 3 eggs roll out of the carton at random. What formula would be used to find the probability that exactly 2 of the rolling eggs are cracked?

(a)
$$P(x) = C(n,x) \times p^{x} \times q^{(n-x)}$$
 (c) $P(x) = q^{x} p$ (e) $P(x) = n(q) \times n(p)$
(b) $P(x) = \frac{C(a,x) \times C(n-a, r-x)}{C(n,r)}$ (d) $P(x) = \frac{1}{n}$

44. Which formula finds the probability of a single event in a binomial distribution?

(a)
$$P(x) = C(n,x) \times p^{x} \times q^{(n-x)}$$
 (c) $P(x) = q^{x} p$ (e) $P(x) = n(q) \times n(p)$
(b) $P(x) = \frac{C(a,x) \times C(n-a, r-x)}{C(n,r)}$ (d) $P(x) = \frac{1}{n}$

- 45. Which description of x is for a discrete random variable which could be used to make a binomial distribution?
 - (a) **x** is a person's IQ score.
 - (b) **x** is the probability that the life of a lightbulb is between 90 and 115 hours.
 - (c) You draw x cards from a deck (without replacement) until you get a heart.
 - (d) \mathbf{x} % of people's heights are greater than 1.2 m.
 - (e) Guessing **x** true-false questions correctly on an examination with 5 questions.
- 46. A child flips a coin 5 times and counts the number of heads. Which formula finds the expected number of heads in the 5 coin flips?
 - (a) $E(x) = \sum_{n=1}^{\infty} P(x) \times x$ (c) $E(x) = \frac{q}{p}$ (e) $E(x) = \bar{x} = n \times p$ (b) $E(x) = \frac{\min(x) + \max(x)}{2}$ (d) $E(x) = \frac{ra}{n}$
- 47. A minivan has 6 seats. There are 18 people at a family picnic, 8 adults and 10 children. Six people are selected at random to go for ice cream. Which formula would be used to find the expected number of adults in the van?
 - $E(x) = \sum_{n=1}^{\infty} P(x) \times x$ $E(x) = \frac{\min(x) + \max(x)}{2}$ (c) $E(x) = \frac{q}{p}$ (e) $E(x) = \bar{x} = n \times p$ (c) $E(x) = \frac{q}{p}$ (e) $E(x) = \bar{x} = n \times p$ (f) $E(x) = \frac{ra}{n}$ (a) (b)
- 48. Which formula would find the expected value in the winnings at a lottery? (a) $E(x) = \sum_{n=1}^{\infty} P(x) \times x$ (c) $E(x) = \frac{q}{p}$ (e) $E(x) = \bar{x} = n \times p$ (b) $E(x) = \frac{\min(x) + \max(x)}{2}$ (d) $E(x) = \frac{ra}{n}$
- 49. A pair of dice is rolled until the player gets doubles. Which formula finds the expected number of times a player must roll the dice before they get doubles?
 - (a) $E(x) = \sum_{x \to 0} P(x) \times x$ (c) $E(x) = \frac{q}{p}$ (e) $E(x) = \bar{x} = n \times p$ (b) $E(x) = \frac{\min(x) + \max(x)}{2}$ (d) $E(x) = \frac{ra}{n}$

- 50. You roll an 8 sided die in an exciting game of dungeons and dragons. What is the probability of rolling a 1?
 - (a) 0.125 (b) 1/6 (c) 0.15625 (d) 0.53 (e) 0.8
- 51. There are 6 clear marbles and 4 striped ones in a bag. The distribution measures the number of striped marbles when 2 marbles are chosen without replacement. What is the probability of getting exactly one striped marble?
 - (a) 0.125 (b) 1/6 (c) 0.15625 (d) 0.53 (e) 0.8
- 52. There are 6 clear marbles and 4 striped ones in a bag. The distribution measures the number of striped marbles when 2 marbles are chosen without replacement. What is the expected number of striped marbles?
 - (a) 0.125 (b) 1/6 (c) 0.15625 (d) 0.53 (e) 0.8
- 53. A child flips a coin 5 times and counts the number of heads. Which formula would find the standard deviations for this probability distribution?
 - (a) $\sigma = \frac{\sum f \times x}{\sum f}$ (c) $\sigma = \sqrt{npq}$ (e) None of the previous would (b) $\sigma = \sqrt{\frac{\sum f(x - \bar{x})^2}{\sum f}}$ (d) $\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$
- 54. In a sample of 200 tax returns, 40 contain errors. A government auditor selects a random sample of 3 (without replacement) to study. Which formula would find the standard deviation in this probability distribution?
 - (a) $\sigma = \frac{\sum f \times x}{\sum f}$ (b) $\sigma = \sqrt{\frac{\sum f (x - \bar{x})^2}{\sum f}}$ (c) $\sigma = \sqrt{npq}$ (d) $\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$
- (e) None of the previous would work for this distribution.
- 55. Circuit boards are assembled by selecting 4 computer chips at random from a large batch of chips. In this batch of chips, 90% of the chips are acceptable. Let X denote the number of acceptable chips out of a sample of 4 chips from this batch. What is the least probable value of X?

 (a) 0
 (b) 1
 (c) 2
 (d) 3
 (e) 4
- 56. A non-profit organization plans to hold a raffle to raise funds for its operations. A total of 1,000 raffle tickets will be sold for \$1.00 each. After all the tickets are sold, one ticket will be selected at random and its owner will receive \$50.00. The expected value for the net gain for each ticket is -\$0.95. What is the meaning of the expected value in this context?
 - (a) The ticket owners lose an average of \$0.05 per raffle ticket.
 - (b) The ticket owners lose an average of \$0.95 per raffle ticket.
 - (c) Each ticket owner will lose exactly \$0.95 per raffle ticket.
 - (d) A ticket owner would have to purchase 19 more tickets for the expected value of his or her net gain to increase to \$0.00.
 - (e) A ticket owner has a 95 percent chance of having a ticket that is not selected.

57. A construction company sells concrete in batches of 5 cubic yards. The probability distribution of X, the number of cubic yards sold in a single order for concrete from this company is shown in the table below. What is the expected value of X?

		X = the nu	mber of	f cubic ya	rds	10	15	20	25	30
		Probability				0.15	0.25	0.25	0.30	0.05
(a)	5.76	(b)	15.5	(c	:)	19.25	(d)	20	(e)	25.3

There are 4 bugs on a table. When you bring a citronella candle to the table, each bug flies away with a probability of 0.9.

An MDM4U student decides that this would make an amazing probability distribution for their final project.

They create the spreadsheet on the right.

	Α	В	С	D	E	F	G
1	Bino	mia	l Dis	trib	utio	n	
2	(a) Fill ir	n n, p ai	nd q				
3	n	4	р	0.9	q	0.1	
4							
5	(b) Crea	te the p	robabil	ity distr	ribution	for 4 b	ugs.
6	х	0	1	2	3	4	
7	C part	1	4	6	4	1	
8	p part	1	0.9	0.81	0.729	0.656	
9	q part	1E-04	1E-03	0.01	0.1	1	
10	P(x)	1E-04	0.004	0.049	0.292	0.656	
11							
12	(c) Calcı	ulate th	e E(x) a	nd stan	dard de	viation	
13	E(x)	3.6	σ	0.6			
14							
15	(d) Calculate these probabilities using sum						
16	P(x<3)	0.052					
17	P(x=4)	0.656					
18	P(x>=2)	0.996					

58. In the	e above sprea	adsheet, wha	it formula	should ap	pear in the	e cell F3?)			
(a)	=B3-D3	(b) =q	(c)) =0.1	(d)) =1-D3		(e)	=q(0.9)	
59. In the (a) (b)	e above sprea =combin(B =combin(B	adsheet, wha 3, B6) 3, \$B\$6)	it formula (c) =0 (d) =0	should ap combin(\$E combin(\$E	pear in th \$\$3, B6) \$\$3, \$B\$6)	e cell B7	(e)	Non	e of the previo	ous
60. In the (a)	e above sprea =D3^B6 (adsheet, wha (b) =D3^B3	at formula (c)	should ap =D3^F3	pear in the (d) =I	e cell B83 D3^A8	, (e)	Nor	ne of the previ	ous
61. In the (a) (b)	e above sprea =squareroo =squareroo	adsheet, wha ot(B13) ot (B3*D3*F3	nt formula (c) b) (d)	should ap =squirt(=sqrt(B3	pear in the B13) 3*D3*F3)	e cell D1:	3? [e]	None	e of the previo	us
62. In the (a) (b)	e above sprea =sum(B10: =sum(B10:	adsheet, wha D10) E10)	nt formula (c) (d)	should ap =sum(E2 =sum(B2	pear in th 10:F10) 10:F10)	e cell B1(6? [e]	None	e of the previo	us

- 63. If a polling company says their results are accurate 19 times out of 20, what is their level of confidence?
 - (a) 80% (b) 90% (c) 95% (d) 99% (e) 19%

64. A random sample of 432 voters revealed that 100 are in favour of a new law changing the colour of stop signs. A 95 percent confidence interval (z = 1.960) for the proportion of the population of voters who are in favour of the new stop signs is:

(A)
$$100 \pm 1.96\sqrt{\frac{0.5(0.5)}{432}}$$
 (C) $100 \pm 1.96\sqrt{\frac{0.231(0.769)}{432}}$ (E) $0.231 \pm 1.645\sqrt{\frac{0.231(0.769)}{432}}$
(B) $100 \pm 1.645\sqrt{\frac{0.5(0.5)}{432}}$ (D) $0.231 \pm 1.96\sqrt{\frac{0.231(0.769)}{432}}$

65. A market research firm asked 300 people who they were going to vote for in the upcoming election. Fifty-five people said they would vote for the rhinoceros party. Determine a 95% (z = 1.960) confidence interval for the percent of people who will vote for the rhinoceros party.

(a) 0 (b) 0.0438 (c) 0.183 (d) 14 to 23% (e)
$$18\% \pm 2\%$$