Hypergeometric Probability Distributions

If you loved combinations and probability, you are going to love these.
Sadly, the converse is also true.

$E(x)=\frac{r a}{n}$

$N=$ the total number of items to choose from $a=$ the total number of the "successful" item $r=$ the number of places to put them

Hypergeometric Distributions
Name:
5.8 K 성

1. Write out the formula for the expected value of a hypergeometric distribution 9 times.

$$
P(x)=\frac{C(a, x) \times C(n-a, r-x)}{C(n, r)}
$$

$N=$ the total number of items to choose from $a=$ the total number of the "successful" item $r=$ the number of places to put them $x=$ the exact number of "successful" items

$$
P(x)=\frac{C(a, x) \times C(n-a, r-x)}{C(n, r)}
$$

$\mathrm{N}=$ the total number of items to choose from
$a=$ the total number of the "successful" item
$r=$ the number of places to put them
$x=$ the exact number of "successful" items
2. Write out the formula for the probability of a hypergeometric event 9 times.

3. A mini-van has 6 seats. There are 18 people at a family picnic, 8 adults and 10 children. Six people are selected at random to go for ice cream. Calculate the probability that there are exactly 2 adults in the van.

$$
\begin{aligned}
& \mathrm{n}= \\
& \text {; } \mathrm{a}= \\
& \text {; r = } \\
& \text {; } x= \\
& P(x=\ldots)=\frac{C(\ldots, \ldots) \times C(\ldots, \ldots)}{C(\ldots, \ldots)}
\end{aligned}
$$

$$
P(x)=\frac{C(a, x) \times C(n-a, r-x)}{C(n, r)}
$$

- $\mathrm{n}=$ total items to choose from
- a = total of the "successful" item
- $r=$ number of places to put them
- $\mathrm{x}=$ exact number of "successful" items

4. A track team has 25 members. 10 are sprinters and 15 are long distance runners. If 5 people are randomly selected to be in a picture, what is the probability that exactly 3 of them are sprinters?
$\mathrm{n}=$
; $\mathrm{a}=$
; r =
; $x=$

$$
P(x=\ldots)=\frac{C(\ldots, \ldots) \times C(\ldots, \ldots)}{C(\ldots, \ldots)}
$$

7. You have a bag of 20 marbles, 4 are red and 16 are blue. You draw out 2 marbles without replacement. Make the probability distribution for the number of red marbles in the 2 marble selection.
$X \sim$ Hypergeometric $(n=20, a=4, r=2)$. Thus, $E(x)=r a / n=$ \qquad

\mathbf{x}	$\mathbf{0}$ red marbles	$\mathbf{1}$ red marble	$\mathbf{2}$ red marbles
$\mathbf{C}(a, \mathbf{x})$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$
$\mathbf{C}(\mathrm{n}-\mathrm{a}, \mathrm{r}-\mathbf{x})$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$
$\mathbf{C}(\mathrm{n}, \mathrm{r})$			
$\mathbf{P}(\mathbf{x})$			

7. You have a bag of 20 marbles, 4 are red and 16 are blue. You draw out 2 marbles without replacement. Make the probability distribution for the number of red marbles in the 2 marble selection.
$X \sim$ Hypergeometric $(n=20, a=4, r=2)$. Thus, $E(x)=r a / n=$ \qquad

\mathbf{x}	$\mathbf{0}$ red marbles	$\mathbf{1}$ red marble	$\mathbf{2}$ red marbles
$\mathbf{C}(\mathbf{a}, \mathbf{x})$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$
$\mathbf{C}(\mathbf{n - a , r - x)}$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$
$\mathbf{C}(\mathbf{n}, \mathbf{r})$			
$\mathbf{P}(\mathbf{x})$			

x	0	1	2
$C(a, x)$	$C(4,0)=1$	$C(4,1)=4$	$C(4,2)=6$
$C(n-a, r-x)$	$C(16,2)=120$	$C(16,1)=16$	$C(16,0)=1$
Numerator	120	64	6
$C(n, r)$	$C(20,2)=190$	$C(20,2)=190$	$C(20,2)=190$
$P(x)$	0.6316	0.3368	0.0316

Insulators for transformers are purchased in cases of 10. From the case, 4 insulators are sampled and inspected. If the sample contains 1 or more defective insulators, the whole case is sent back to the supplier. Suppose the case contains 3 defective insulators. What is the probability that the case will be returned?

$$
\begin{aligned}
& N=\text { the total of items to choose from } \\
& a=\text { the total of the "successful" items } \\
& r=\text { the number of places to put them } \\
& x=\text { the exact number of "successful" items }
\end{aligned}
$$

Insulators for transformers are purchased in cases of 10. From the case, 4 insulators are sampled and inspected. If the sample contains 1 or more defective insulators, the whole case is sent back to the supplier. Suppose the case contains 3 defective insulators. What is the probability that the case will be returned?
$10 \mathrm{~N}=$ the total of items to choose from
$3 \mathrm{a}=$ the total of the "successful" items
4 r= the number of places to put them
0-3 $x=$ the exact number of "successful" items

Insulators for transformers are purchased in cases of 10. From the case, 4 insulators are sampled and inspected. If the sample contains 1 or more defective insulators, the whole case is sent back to the supplier. Suppose the case contains 3 defective insulators. What is the probability that the case will be returned?
$10 \mathrm{~N}=$ the total of items to choose from
$3 \mathrm{a}=$ the total of the "successful" items
$4 \quad r=$ the number of places to put them
0-3 $x=$ the exact number of "successful" items

x	0	1	2	3
$C(a, x)$	$C(3,0)=1$	$C(3,1)=3$	$C(3,2)=3$	$C(3,3)=1$
$C(n-a, r-x)$	$C(7,4)=35$	$C(7,3)=35$	$C(7,2)=21$	$C(7,1)=7$
Numerator	35	105	63	7
$C(n, r)$	$C(10,4)=210$	$C(10,4)=210$	$C(10,4)=210$	$C(10,4)=210$
$P(x)$	0.1667	0.5	0.3	0.0333

Insulators for transformers are purchased in cases of 10. From the case, 4 insulators are sampled and inspected. If the sample contains 1 or more defective insulators, the whole case is sent back to the supplier. Suppose the case contains 3 defective insulators. What is the probability that the case will be returned?
$10 \mathrm{~N}=$ the total of items to choose from
3 a = the total of the "successful" items
$4 \quad r=$ the number of places to put them
0-3 $x=$ the exact number of "successful" items

x	0	1	2	3
$C(a, x)$	$C(3,0)=1$	$C(3,1)=3$	$C(3,2)=3$	$C(3,3)=1$
$C(n-a, r-x)$	$C(7,4)=35$	$C(7,3)=35$	$C(7,2)=21$	$C(7,1)=7$
Numerator	35	105	63	7
$C(n, r)$	$C(10,4)=210$	$C(10,4)=210$	$C(10,4)=210$	$C(10,4)=210$
$P(x)$	0.1667	0.5	0.3	0.0333

Insulators for transformers are purchased in cases of 10. From the case, 4 insulators are sampled and inspected. If the sample contains 1 or more defective insulators, the whole case is sent back to the supplier. Suppose the case contains 3 defective insulators. What is the probability that the case will be returned?

x	0	1	2	3
$C(a, x)$	$C(3,0)=1$	$C(3,1)=3$	$C(3,2)=3$	$C(3,3)=1$
$C(n-a, r-x)$	$C(7,4)=35$	$C(7,3)=35$	$C(7,2)=21$	$C(7,1)=7$
Numerator	35	105	63	7
$C(n, r)$	$C(10,4)=210$	$C(10,4)=210$	$C(10,4)=210$	$C(10,4)=210$
$P(x)$	0.1667	0.5	0.3	0.0333
$P(x>=1)$	0.8333			

