Hypergeometric Probability Distributions

If you loved combinations and probability, you are going to love these. Sadly, the converse is also true.

 $E(x) = \frac{ra}{n}$

N = the total number of items to choose from a = the total number of the "successful" item r = the number of places to put them

Hypergeometric Distributions

1. Write out the formula for the expected value of a hypergeometric distribution 9 times.

$$P(x) = \frac{C(a, x) \times C(n - a, r - x)}{C(n, r)}$$

N = the total number of items to choose from a = the total number of the "successful" item r = the number of places to put them x = the exact number of "successful" items

$$P(x) = \frac{C(a, x) \times C(n - a, r - x)}{C(n, r)}$$

N = the total number of items to choose from a = the total number of the "successful" item r = the number of places to put them x = the exact number of "successful" items

2. Write out the formula for the probability of a hypergeometric event 9 times.

3. A mini-van has 6 seats. There are 18 people at a family picnic, 8 adults and 10 children. Six people are selected at random to go for ice cream. Calculate the probability that there are exactly 2 adults in the van.

n = ____; a = ____; r = ____; x = ____

$$P(x = ___) = \frac{C(__, __) \times C(__, __)}{C(__, __)}$$

$$P(x) = \frac{C(a, x) \times C(n - a, r - x)}{C(n, r)}$$

- n = total items to choose from
- a = total of the
 "successful" item
- r = number of places to put them
- x = exact number of "successful" items

4. A track team has 25 members. 10 are sprinters and 15 are long distance runners. If 5 people are randomly selected to be in a picture, what is the probability that exactly 3 of them are sprinters?

n = ____; a = ____; r = ____; x = ____

$$P(x = __) = \frac{C(__, __) \times C(__, __)}{C(__, __)}$$

$$P(x) = \frac{C(a, x) \times C(n - a, r - x)}{C(n, r)}$$

- n = total items to choose from
- a = total of the "successful" item
- r = number of places to put them
- x = exact number of "successful" items

7. You have a bag of 20 marbles, 4 are red and 16 are blue. You draw out 2 marbles without replacement. Make the probability distribution for the number of red marbles in the 2 marble selection.

x	0 red marbles	1 red marble	2 red marbles
C(a, x)	C(,)=	C(,)=	C(,)=
C(n-a, r-x)	C(,)=	C(,)=	C(,)=
C(<u>n,r</u>)			
P(x)			

X~ Hypergeometric (n=20, a=4, r=2). Thus, E(x) = ra/n = _____

7. You have a bag of 20 marbles, 4 are red and 16 are blue. You draw out 2 marbles without replacement. Make the probability distribution for the number of red marbles in the 2 marble selection.

X~ Hypergeometric (n=20, a=4, r=2). Thus, E(x) = ra/n = _____

x		0 re	ed marbles	1 red n	narble	2 red marbles	
C(a, x	()	C(,)=		C(,)=		C(,)=	
C(n-a, r	^-x)	C(,)=		C(,)=		C(,)=	
C(n,r)						
P(x)	P(x)						
		х	0	1	2		
	C	:(a,x)	C(4,0) = 1	C(4,1) = 4	C(4,2) = 6		
	C(n-a, r-x)		C(16,2) = 120	C(16,1) = 16	C(16,0) = 1		
	Numerator		120	64	6		
	C(n,r)		C(20,2) = 190	C(20,2) = 190	C(20,2) = 19	0	
	P(x)		0.6316	0.3368	0.0316		

N = the total of items to choose from
a = the total of the "successful" items
r = the number of places to put them
x = the exact number of "successful" items

- **10** N = the total of items to choose from
- **3** a = the total of the "successful" items
- 4 r = the number of places to put them
- **0-3** x = the exact number of "successful" items

- **10** N = the total of items to choose from
- 3 a = the total of the "successful" items
- 4 r = the number of places to put them
- **0-3** x = the exact number of "successful" items

х	0	1	2	3
C(a,x)	C(3,0) = 1	C(3,1) = 3	C(3,2) = 3	C(3,3) = 1
C(n-a, r-x)	C(7,4) = 35	C(7,3) = 35	C(7,2) = 21	C(7,1) = 7
Numerator	35	105	63	7
C(n,r)	C(10,4) = 210	C(10,4) = 210	C(10,4) = 210	C(10,4) = 210
P(x)	0.1667	0.5	0.3	0.0333

- 10 N = the total of items to choose from
- 3 a = the total of the "successful" items
- 4 r = the number of places to put them
- 0-3 x = the exact number of "successful" items

х	0	1	2	3
C(a,x)	C(3,0) = 1	C(3,1) = 3	C(3,2) = 3	C(3,3) = 1
C(n-a, r-x)	C(7,4) = 35	C(7,3) = 35	C(7,2) = 21	C(7,1) = 7
Numerator	35	105	63	7
C(n,r)	C(10,4) = 210	C(10,4) = 210	C(10,4) = 210	C(10,4) = 210
P(x)	0.1667	0.5	0.3	0.0333

					Probability of Selecting x Defective Insulators
х	0	1	2	3	0.6
C(a,x)	C(3,0) = 1	C(3,1) = 3	C(3,2) = 3	C(3,3) = 1	0.5
C(n-a, r-x)	C(7,4) = 35	C(7,3) = 35	C(7,2) = 21	C(7,1) = 7	
Numerator	35	105	63	7	0.4
C(n,r)	C(10,4) = 210	C(10,4) = 210	C(10,4) = 210	C(10,4) = 210	0.3
P(x)	0.1667	0.5	0.3	0.0333	
					0.2
P(x>=1)	0.8333				0.1
r.					