Binomial Distribution

Combinations, Probability and Distributions. Oh my!

Pg 375, \#8. A lottery has a \$1,000,000 first prize, a \$25,000 second prize and five $\$ 1,000$ third prizes. A total of $2,000,000$ tickets are sold. If a ticket costs $\$ 2.00$ what is the expected profit per ticket?

-	A	B	C	D	E	F
1	Prize	First	Second	Third	No win	Sum
2	\$	\$ 1,000,000.00	\$ 25,000.00	\$1,000.00	\$	\$ 1,026,000.00
3	Freq	1	1	5	1999993	2000000
4	$\mathrm{P}(\mathrm{x})$	0.0000005	0.0000005	0.0000025	0.999997	1
5	\$*P(x)	\$ 0.50	\$ 0.01	\$ 0.00	\$	\$ 0.52
6						
7	(b)	One Ticket	2		One Ticket	2
8		All Tickets	\$ 4,000,000.00		E(x)	\$ 0.52
9		Costs	\$ 1,026,000.00		Profit	\$ 1.49
10		Profit	\$ 2,974,000.00			
11		Profit per ticket	\$ 1.49			

Bernoulli Trial

- Two outcomes: success/failure; boy/girls; true/false
- Independent
- The probability of success is the same at every trial
- The trial happens a series of times
- Flipping a coin
- Rolling a six
- Opinion poll; voter that will vote "yes"
- Is the top card of a shuffled deck an ace
- Was the new born child a girl?

Bernoulli Trial

- Ball hits a peg.
- It can go right (success) or left, with a probability of 0.5 in this model.
https://phet.colorado.edu/sims/html/ plinko-probability/latest/plinkoprobability en.html

Genuine not simulated

Probability of an Event in a Binomial Distribution

$$
\mathrm{P}(\mathrm{X})=C(n, x) p^{x} q^{n-x} \quad \begin{aligned}
& \mathrm{n}=\text { number of trials } \\
& \mathrm{x}=\text { number of successes } \\
& \mathrm{q}=\text { prob of success }
\end{aligned}
$$

What is the Probability of flipping a coin 6 times and getting 5 heads and 1 tail?
success is flip heads

$$
\begin{aligned}
& n=6 \\
& x=5 \\
& p=0.5 \\
& q=0.5
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{x}=5)=C(6,5) 0.5^{5} 0.5^{1}
$$

$$
\begin{aligned}
& =6 \times 0.01563 \\
& =0.094
\end{aligned}
$$

Binomial Distributions

Name:
5.6 K

1. Write out the formula for the probability of a binomial event 9 times.

2. You are flipping a weighted coin twice. It lands on heads with a probability of 0.6. What is the probability distribution for heads?

$$
x^{\sim} \operatorname{Bin}(n=2, p=0.6) \text {. Thus, } q=
$$

\qquad

x	0 heads	1 head	2 heads
$C(n, x)$	$C(\ldots, \ldots)=$	$\mathrm{C}(\ldots, \ldots)=$	$C(\ldots, \ldots)=$
$\mathbf{p}^{\text {x }}$	$\wedge \ldots$	\ldots ___ $=$	\ldots ___ $=$
q^{n+x}	$\wedge \ldots$	$\wedge \ldots$	$\wedge \ldots$
$\mathrm{P}(\mathrm{x})$			

6. For each question, identify the "success", n, p and q.

	Success	n	p	q
a. You are writing a multiple choice test and have 0.9 probability of getting a question correct. There are 10 questions.				
b. The probability of getting a red light is 0.4. On your way to school there are 19 lights.				

7. Write the equation in the form: $X^{\sim} \operatorname{Bin}(n=$ \qquad $p=$ \qquad).
Then write the formula for the probability of event x, with n, p and q filled in.

	Equation	Probability of X
a. You are writing a multiple choice test and have 0.9 probability of getting a question correct. There are 10 questions.		
b. The probability of getting a red light is 0.4. On your way to school there are 19 lights.		

$\mathrm{P}(\mathrm{x})=C(n, x) \times p^{x} q^{n-x}$

$=\mathrm{COMBIN}(\$ F \$ 3, B 5)^{*}\left(\$ \mathrm{~B} \$ 3^{\wedge} \mathrm{B} 5\right)^{*}\left(\$ \mathrm{D} \$ 3^{\wedge}(\$ \mathrm{~F} \$ 3-\mathrm{B} 5)\right)$

	A	B	C	D	E	F	G	H
1	Binomial Distribution							
2								
3	p	0.2	q	0.8	n	5		
4								
5	x	O	1	2	3	4	5	Sum
6	$\mathrm{p}(\mathrm{x})$	$=$ COMBIN	0.41	0.205	0.051	0.006	0.0003	1

Discretetown

Treatment works 60\%
of the time

We expect to be able to cure 6 patients per day.

However, on a particular day, we could easily have more than 6 or fewer than 6.

$\operatorname{Bin}(10,0.6)$

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
90% chance it is between 4 and 8.
$\operatorname{Bin}(n, p)$
\# of successes

$$
n=
$$

Number of Trials

$$
p=
$$

Probability of Success

Trial			Result
1	\checkmark		
2	\times		
3	\times		
4	\checkmark		
\cdots	\cdots		
n	\nearrow		
	$H \mathbf{X}$		

