Binomial Distribution

Combinations, Probability and Distributions. Oh my!

Pg 375, #8. A lottery has a \$1,000,000 first prize, a \$25,000 second prize and five \$1,000 third prizes. A total of 2,000,000 tickets are sold. If a ticket costs \$2.00 what is the expected profit per ticket?

	А	В	С	D	E	F	
1	Prize	First	Second	Third	No win	Sum	
2	\$	\$ 1,000,000.00	\$ 25,000.00	\$1,000.00	\$-	\$ 1,026,000.00	
3	Freq	1	1	5	1999993	2000000	
4	P(x)	0.0000005	0.0000005	0.0000025	0.999997	1	
5	\$ * P(x)	\$ 0.50	\$ 0.01	\$ 0.00	\$ -	\$ 0.52	
6							
7	(b)	One Ticket	2		One Ticket	2	
8		All Tickets	\$ 4,000,000.00		E(x)	\$ 0.52	
9		Costs	\$ 1,026,000.00		Profit	\$ 1.49	
10		Profit	\$ 2,974,000.00				
11		Profit per ticket	\$ 1.49				
4.5							

Bernoulli Trial

- Two outcomes: success/failure; boy/girls; true/false
- Independent
- The probability of success is the same at every trial
- The trial happens a series of times

- Flipping a coin
- Rolling a six
- Opinion poll; voter that will vote "yes"
- Is the top card of a shuffled deck an ace
- Was the new born child a girl?

Bernoulli Trial

- Ball hits a peg.
- It can go right (success) or left, with a probability of 0.5 in this model.

https://phet.colorado.edu/sims/html/ plinko-probability/latest/plinkoprobability_en.html

Genuine not simulated

https://www.youtube.c om/watch?v=4HpvBZn HOVI Probability of an Event in a Binomial Distribution

$$P(x) = C(n, x) p^{x} q^{n-x}$$

n = number of trials
x = number of successes
p = prob of success
q = prob of failure

What is the Probability of flipping a coin 6 times and getting 5 heads and 1 tail?

success is flip heads n = 6 x = 5 $P(x=5) = C(6,5) \ 0.5^5 \ 0.5^1$ $= 6 \times 0.01563$

p = 0.5q = 0.5

= 0.094

Binomial Distributions

Name:..... 5.6 H

1. Write out the formula for the probability of a binomial event 9 times.

2. You are flipping a weighted coin twice. It lands on heads with a probability of 0.6. What is the probability distribution for heads?

х	0 heads	1 head	2 heads
C(n,x)	C(,)=	C(,)=	C(,)=
p ^x	^_=	^_=	=
q ⁿ ⊦x	=	=	=
P(x)			

X~ Bin(n=2, p=0.6). Thus, q=_____

6. For each question, identify the "success", n, p and q.

	Success	n	р	q
a. You are writing a multiple choice test and				
have 0.9 probability of getting a question				
correct. There are 10 questions.				
b. The probability of getting a red light is 0.4.				
On your way to school there are 19 lights.				

7. Write the equation in the form: $X^Bin(n=__, p=__)$.

Then write the formula for the probability of event x, with n, p and q filled in.

	Equation	Probability of X
a. You are writing a multiple choice test and		
have 0.9 probability of getting a question		
correct. There are 10 questions.		
b. The probability of getting a red light is 0.4.		
On your way to school there are 19 lights.		

 $P(x) = C(n, x) \times p^{x}q^{n-x}$

=COMBIN(\$F\$3,B5)*(\$B\$3^B5)*(\$D\$3^(\$F\$3-B5))

	А	В	С	D	Е	F	G	Н
1	Binomial Distribution							
2								
3	р	0.2	q	0.8	n	5		
4								
5	x	0	1	2	3	4	5	Sum
6	p(x)	=COMBIN	0.41	0.205	0.051	0.006	0.0003	1

Treatment works 60% of the time

We expect to be able to cure 6 patients per day.

However, on a particular day, we could easily have more than 6 or fewer than 6.

90% chance it is between 4 and 8.

