Expected Value

Playing the Lottery....hmm....

Calculate the utility function for this distribution:

x	12	14	16	18	20
$\$$	7	1	3	4	6
$P(x)$	0.05	0.3	0.15	0.25	0.25
$\$ P(x)$	0.35	0.3	0.45	1	1.5

$$
\begin{aligned}
E(X) & =\sum \$ x \times P(x) \\
& =\$ 0.35+\$ 0.3+\$ 0.45+\$ 1+\$ 1.5 \\
& =\$ 3.6
\end{aligned}
$$

On average, you will expect to make $\$ 3.60$ payout with this distribution.

Why does Las Vegas look like this?

			0		00	
		$\stackrel{\rightharpoonup}{n}$	1	2	3	
		4	5	6		
		7	8	9		
		10	11	12		
苋			$\frac{\stackrel{y}{3}}{\frac{N}{2}}$	13	14	15
		16		17	18	
$\begin{array}{\|l} \frac{\infty}{N} \\ \frac{N}{\lambda} \end{array}$				19	20	21
		22		23	24	
			W	25	26	27
		28		29	30	
$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{\omega}} \\ \dot{\omega} \end{array}\right\|$		へ	31	32	33	
			34	35	36	
			2-1	2-1	2-1	

Bet common name	Winning spaces	Payout	Odds against winning
Straight up	Any single number including 0	35 to 1	36 to 1
Split	any two adjoining numbers vertical or horizontal	17 to 1	17.5 to 1
Basket	$0,1,2$ or 0, 2, 3	11 to 1	11.33 to 1
Street	any three numbers horizontal (1, 2, 3 or 4, 5, 6 etc.)	11 to 1	11.33 to 1
Corner	any four adjoining numbers in a block (eg 17, 18, 20, 21)	8 to 1	8.25 to 1
Six Line	any six numbers from two rows (eg 28, 29, 30, 31, 32, 33)	5 to 1	5.167 to 1
1st Column	$1,4,7,10,13,16,19,22,25,28,31,34$	2 to 1	2.083 to 1
2nd Column	$2,5,8,11,14,17,20,23,26,29,32,35$	2 to 1	2.083 to 1
3rd Column	$3,6,9,12,15,18,21,24,27,30,33,36$	2 to 1	2.083 to 1
1st Dozen	1 through 12	2 to 1	2.083 to 1
2nd Dozen	13 through 24	2 to 1	2.083 to 1
3rd Dozen	25 through 36	2 to 1	2.083 to 1
Odd	$1,3,5, \ldots, 35$	1 to 1	1.056 to 1
Even	$2,4,6, \ldots, 36$	1 to 1	1.056 to 1
Red	Red nos	1 to 1	1.056 to 1
Black	Black nos	1 to 1	1.056 to 1
1 to 18	$1,2,3, \ldots, 18$	1 to 1	1.056 to 1
19 to 36	$19,20,21, \ldots, 36$	1 to 1	1.056 to 1

\$10 roulette bet on a single space

x	Lose	Win		4	5		6
\$	0	350		10	11		12
$\mathrm{P}(\mathrm{x})$	0.9737	0.0263		13	14		15
\$*P(x)	0	9.21	-	19	17		${ }^{18}$
			*	22	23		24
$E(X)=\sum \$ x \times P(x)$			\bigcirc	25	26		27
			\%	28	29		30
			車	34	32 35 3 1		33
= \$9.21				2.1	2-1		2.1

$\$ 10$ roulette bet on a red/black/even/odd

x	Lose	Win
$\$$	0	10
$\mathrm{P}(\mathrm{x})$	0.5264	0.4736
$\${ }^{*} \mathrm{P}(\mathrm{x})$	0	4.74
$E(X)$	$=\sum \$ x \times P(x)$	
	$=\$ 4.74$	

	$\stackrel{\stackrel{\rightharpoonup}{*}}{\infty}$		0		00	
		$\stackrel{\stackrel{\rightharpoonup}{4}}{\stackrel{\rightharpoonup}{*}}$	1	2	3	
			4	5	6	
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		7	8	9	
			10	11	12	
硆		N	13	14	15	
		16	17	18		
$\begin{aligned} & \frac{0}{2} \\ & \frac{0}{\lambda} \\ & \hline \end{aligned}$			N	19	20	21
			22	23	24	
을		$\stackrel{\text { c }}{\text { c }}$	25	26	27	
		28	29	30		
$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\dot{1}} \\ \dot{\omega} \end{array}\right\|$			31	32	33	
		34	35	36		
				2-1	2-1	2-1

$\$ 10$ roulette bet on a dozen

X	Lose	Win	餪	4			6
\$	0	20	\%	10	\%	1	${ }^{9}$
$\mathrm{P}(\mathrm{x})$	0.6842	0.3158	T	13	1	1	15
\$*P(x)	0	6.32	\%	16	$1{ }^{17}$	7	21
$E(X)=\sum \$ x \times P(x)$			*	22	2	,	24
			\%	25	2	6	27
			\%	28	2	9	30
				31			33
$=\$ 6.32$			\%	34	3	35	36
				2.1			2.1

\#1745 \$500,000 MONEY MANIA

At Start of Game:

Overall odds of winning any prize including prizes of less
than \$20: 1 in 1.00
Odds of winning a prize of $\$ 20$ or more: 1 in 3.13 Top Prize odds: 1 in 2,000,000.00 (Top prize odds may vary $+/-2 \%$)

- Sign your ticket upon receipt.
- Prize amounts for this game are $\$ 5, \$ 10, \$ 20, \$ 25, \$ 50, \$ 100$, $\$ 250, \$ 500, \$ 1,000, \$ 10,000$ and $\$ 500,000$.

X	\$5 (Under \$20)	Over \$20
$\mathrm{P}(\mathrm{x})$	1	0.319
$x^{*} P(x)$	\$5	\$6.38
çlaimed, - Game clo business includiin	$E(x)=\$ 11.38$ easons. These games may have op prizes. Game closing proced	

"People play the lottery all the time unaware of how mind-bogglingly difficult it is to win. It seems like they take a different approach to probabilities. Their rationale must be, "Well, I can either win it or not win it, so my odds of winning are 50/50."

POWERBALL EXPECTED VALUE

NUMBERS MATCHED	PRIZE	PRIZE - COST	ODDS	PROBABILITY	(PRIZE - COST) x PROBABILITY
5 white + 1 red	\$700,000,000	\$699,999,998	1 in 292,201,338	0.00000034\%	\$2.40
5 white	\$1,000,000	\$999,998	1 in 11,688,054	0.00000856\%	\$0.09
4 white + 1 red	\$50,000	\$49,998	1 in 913,129	0.00010951\%	\$0.05
4 white	\$100	\$98	1 in 36,525	0.00273784\%	\$0.00
3 white + 1 red	\$100	\$98	1 in 14,494	0.00689935\%	\$0.01
3 white	\$7	\$5	1 in 580	0.17248517\%	\$0.01
2 white + 1 red	\$7	\$5	1 in 701	0.14258623\%	\$0.01
1 white + 1 red	\$4	\$2	1 in 92	1.08719287\%	\$0.02
0 white + 1 red	\$4	\$2	1 in 38	2.60552371\%	\$0.05
Nothing	\$0	-\$2	1 in 1.04	95.98245642\%	-\$1.92

EXPECTED VALUE: \$0.72

If the Expected Value is $\$ 0.72$... then.... hmmmm.......

NATIONAL BESTSELLER

Pg 79 "The first rule when making decisions about randomness is that events of extremely small probability should generally be ignored. This is a very simple rule that most people do not follow."
"To put it in context, you are over 1,000 times more likely to die in a car crash in the next year. In fact, you are more likely to die in a car crash on the way tot eh store to buy your lottery ticket, than you are to win the lottery. Indeed, if you bought one lottery ticket a week, on average you would win the jackpot less than once every 250,000 years."
"It may be true that someone is going to win the lottery jackpot this week, but let me assure you: that someone will not be you."

I guess I think of lotteries as a tax on the mathematically challenged.

Lottery: A tax on people who are bad at math.

Jeffrey Rosenthal Interview About Lotteries
https://www.youtube.com/watch?v=UCCyeJy00HE

Chapter 21:

Intuitions vs. Formulas

FAS T ${ }_{\text {avd }}$ SLOW

KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS
"(A) masterpiecr ... Thia is ane of the greatest and nant enyping celiections of insights imes the humus mind I have rival."-wiLLase EAsticsiv, Finesial Time

Problem 1: Which do you choose? a) Get $\$ 900$ for sure
b) 90% chance to get $\$ 1,000$

Problem 2: Which do you choose? a) Lose $\$ 900$ for sure
b) 90% chance to lose $\$ 1,000$

Problem 1: Which do you choose? a) Get $\$ 900$ for sure

Majority
b) 90% chance to get $\$ 1,000$

Problem 2: Which do you choose? a) Lose $\$ 900$ for sure
b) 90% chance to lose $\$ 1,000$

GAINS

HIGH
PROBABILITY
Certainty Effect

LOW
PROBABILITY
Possibility Effect

GAINS	LOSSES
95\% chance to win $\$ 10,000$	95% chance to lose $\$ 10,000$
Fear of disappointment	Hope to avoid loss
RISK AVERSE	RISK SEEKING
Accept unfavorable settlement	Reject favorable settlement
5% chance to win $\$ 10,000$	5% chance to lose $\$ 10,000$
Hope of large gain	Fear of large loss
RISK SEEKING	RISK AVERSE
Reject favorable settlement	Accept unfavorable settlement

A: 61% chance to win $\$ 520,000$ or

B: 63% chance to win $\$ 500,000$

C: 98% chance to win $\$ 520,000$ or
D: 100% chance to win $\$ 500,000$

A: 61% chance to win $\$ 520,000$
or
B: 63% chance to win $\$ 500,000$

C: 98% chance to win $\$ 520,000$ or
D: 100% chance to win $\$ 500,000$
61% chance to win $\$ 520,000$
63% chance to win $\$ 500,000$

98% chance to win $\$ 520,000$

Talking to
 Strangers

Malcolm
Gladwell

The problem occurs when we try to determine who is lying and who is telling the truth.

