Expected Value

Playing the Lottery....hmm....

Calculate the utility function for this distribution:

X	12	14	16	18	20
\$	7	1	3	4	6
P(x)	0.05	0.3	0.15	0.25	0.25
\$*P(x)	0.35	0.3	0.45	1	1.5

Probability Distribution

$$E(X) = \sum \$x \times P(x)$$

= \$0.35 + \$0.3 + \$0.45 + \$1 + \$1.5
= \$3.6

On average, you will expect to make \$3.60 payout with this distribution.

Why does Las Vegas look like this?

			0	\checkmark	00
Amer	÷		1	2	3
ican	18	1st	4	5	6
roule	Εv	12	7	8	9
ette	en		10	11	12
	Re		13	14	15
	ä	2nd	16	17	18
	Bla	12	19	20	21
	ìck		22	23	24
	õ		25	26	27
	ld	3rd	28	29	30
	19-	12	31	32	33
	36		34	35	36
			2-1	2-1	2-1

Bet common name	Winning spaces	Payout	Odds against winning
Straight up	Any single number including 0	35 to 1	36 to 1
Split	any two adjoining numbers vertical or horizontal	17 to 1	17.5 to 1
Basket	0, 1, 2 or 0, 2, 3	11 to 1	11.33 to 1
Street	any three numbers horizontal (1, 2, 3 or 4, 5, 6 etc.)	11 to 1	11.33 to 1
Corner	any four adjoining numbers in a block (eg 17, 18, 20, 21)	8 to 1	8.25 to 1
Six Line	any six numbers from two rows (eg 28, 29, 30, 31, 32, 33)	5 to 1	5.167 to 1
1st Column	1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34	2 to 1	2.083 to 1
2nd Column	2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35	2 to 1	2.083 to 1
3rd Column	3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36	2 to 1	2.083 to 1
1st Dozen	1 through 12	2 to 1	2.083 to 1
2nd Dozen	13 through 24	2 to 1	2.083 to 1
3rd Dozen	25 through 36	2 to 1	2.083 to 1
Odd	1, 3, 5,, 35	1 to 1	1.056 to 1
Even	2, 4, 6,, 36	1 to 1	1.056 to 1
Red	Red nos	1 to 1	1.056 to 1
Black	Black nos	1 to 1	1.056 to 1
1 to 18	1, 2, 3,, 18	1 to 1	1.056 to 1
19 to 36	19, 20, 21,, 36	1 to 1	1.056 to 1

\$10 roulette bet on a single space

X	Lose	Win
\$	0	350
P(x)	0.9737	0.0263
\$*P(x)	0	9.21

$$E(X) = \sum \$x \times P(x)$$
$$= \$9.21$$

			0 00				
Ame	<u>1</u>		1	2	3		
rican	18	1st	4	5	6		
roule	Εv	12	7	8	9		
ette	en		10	11	12		
	R		13	14	15		
	ed	2nd	16	17	18		
	Blö	12	19	20	21		
	ack		22	23	24		
	Q		25	26	27		
	dd	Зrd	28	29	30		
	19-	12	31	32	33		
	·36		34	35	36		
			2-1	2-1	2-1		

\$10 roulette bet on a red/black/even/odd

X	Lose	Win
\$	0	10
P(x)	0.5264	0.4736
\$*P(x)	0	4.74

$$E(X) = \sum \$x \times P(x)$$
$$= \$4.74$$

			0	0		
Amer	÷		1	2	3	
ican	18	1st	4	5	6	
roule	Εv	12	7	8	9	
ette	en		10	11	12	
	Re		13	14	15	
	ä	2nd	16	17	18	
	Bla	12	19	20	21	
	nck		22	23	24	
	õ		25	26	27	
	d	3rd	28	29	30	
	19-	12	31	32	33	
	36		34	35	36	
			2-1	2-1	2-1	

\$10 roulette bet on a dozen

X	Lose	Win
\$	0	20
P(x)	0.6842	0.3158
\$*P(x)	0	6.32

$$E(X) = \sum \$x \times P(x)$$
$$= \$6.32$$

			0	\uparrow	00
Amer	1-		1	2	3
ican	18	1st	4	5	6
roule	Εv	12	7	8	9
ette	en		10	11	12
	Re		13	14	15
	ed	2nd	16	17	18
	Bla	12	19	20	21
	ack		22	23	24
	Q		25	26	27
	dd	Зrd	28	29	30
	19-	12	31	32	33
	-36		34	35	36
			2-1	2-1	2-1

Why do governments run lotteries?

#1745 \$500,000 MONEY MANIA

(\$20)100

At Start of Game: Overall odds of winning any prize including prizes of less than \$20: 1 in 1.00 Odds of winning a prize of \$20 or more: 1 in 3.13 Top Prize odds: 1 in 2,000,000.00 (Top prize odds may vary +/- 2%)

• Sign your ticket upon receipt.

 Prize amounts for this game are \$5, \$10, \$20, \$25, \$50, \$100, \$250, \$500, \$1,000, \$10,000 and \$500,000.

X	\$5 (Under \$20)	Over \$20
P(x)	1	0.319
x * P(x)	\$5	\$6.38
 Claimed, se Game closi business re including to 	E(x) = \$11.38 asons. These games may have properties. Game closing procedure	886. documented rizes unclaimed, es will be

"People play the lottery all the time unaware of how mind-bogglingly difficult it is to win. It seems like they take a different approach to probabilities. Their rationale must be, "Well, I can either win it or not win it, so my odds of winning are 50/50."

POWERBALL EXPECTED VALUE

NUMBERS MATCHED	PRIZE	PRIZE - COST	ODDS	PROBABILITY	(PRIZE - COST) x PROBABILITY
5 white + 1 red	\$700,000,000	\$699,999,998	1 in 292,201,338	0.0000034%	\$2.40
5 white	\$1,000,000	\$999,998	1 in 11,688,054	0.0000856%	\$0.09
4 white + 1 red	\$50,000	\$49,998	1 in 913,129	0.00010951%	\$0.05
4 white	\$100	\$98	1 in 36,525	0.00273784%	\$0.00
3 white + 1 red	\$100	\$98	1 in 14,494	0.00689935%	\$0.01
3 white	\$7	\$5	1 in 580	0.17248517%	\$0.01
2 white + 1 red	\$7	\$5	1 in 701	0.14258623%	\$0.01
1 white + 1 red	\$4	\$2	1 in 92	1.08719287%	\$0.02
0 white + 1 red	\$4	\$2	1 in 38	2.60552371%	\$0.05
Nothing	\$0	-\$2	1 in 1.04	95.98245642%	-\$1.92

EXPECTED VALUE: \$0.72

SOURCE: Business Insider calculations with odds and prizes from Powerball

If the Expected Value is \$0.72... then.... hmmm.....

NATIONAL BESTSELLER STRUCK BY LIGHTNING THE CURIOUS JEFFREY S. ROSEN

"Like Freakonomics, Struck by Lightning attacks conventional wisdom." - Ottawa Citizen P.S. Niterita Literita Pg 79 "The first rule when making decisions about randomness is that events of extremely small probability should generally be ignored. This is a very simple rule that most people do not follow."

"To put it in context, you are over 1,000 times more likely to die in a car crash in the next year. In fact, you are more likely to die in a car crash on the way tot eh store to buy your lottery ticket, than you are to win the lottery. Indeed, if you bought one lottery ticket a week, on average you would win the jackpot less than once every 250,000 years."

"It may be true that *someone* is going to win the lottery jackpot this week, but let me assure you: that someone will not be you." I guess I think of lotteries as a tax on the mathematically challenged.

Lottery: A tax on people who are bad at math.

Jeffrey Rosenthal Interview About Lotteries

https://www.youtube.com/watch?v=UCCyeJy00HE

THE NEW YORK TIMES BESTSELLER

THINKING,

FAST AND SLOW

DANIEL

KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS

Chapter 21: Intuitions vs. Formulas

Humans, especially experts, believe that they can overrule the formula because they have additional information.

They are wrong. Formulas are more accurate. Problem 1: Which do you choose?a) Get \$900 for sureb) 90% chance to get \$1,000

Problem 2: Which do you choose? a) Lose \$900 for sure b) 90% chance to lose \$1,000 Problem 1: Which do you choose? a) Get \$900 for sure b) 90% chance to get \$1,000

Problem 2: Which do you choose? a) Lose \$900 for sure b) 90% chance to lose \$1,000

	GAINS	LOSSES
HIGH	95% chance to win \$10,000	95% chance to lose \$10,000
PROBABILITY	Fear of disappointment	Hope to avoid loss
Certainty Effect	RISK AVERSE	RISK SEEKING
	Accept unfavorable settlement	Reject favorable settlement
LOW	5% chance to win \$10,000	5% chance to lose \$10,000
PROBABILITY	Hope of large gain	Fear of large loss
Possibility Effect	RISK SEEKING	RISK AVERSE
	Reject favorable settlement	Accept unfavorable settlement

A: 61% chance to win \$520,000 or

B: 63% chance to win \$500,000

C: 98% chance to win \$520,000 or

D: 100% chance to win \$500,000

A: 61% chance to win \$520,000 or

B: 63% chance to win \$500,000

C: 98% chance to win \$520,000

or

D: 100% chance to win \$500,000

Majority

61% chance to win \$520,000 \$317,200 63% chance to win \$500,000 \$315,000

The problem occurs when we try to determine who is lying and who is telling the truth.