Applying Pascal's Method


## Recall the triangle equations.

## Fun with Pascal's Triangle

## Suppose your name is Tom

Arrange your name in Pascal's Triangle form with one letter per line. Find how many different paths you can take to spell your name.


1 path ends with the $M$ on the left
2 paths end with the $M$ in the middle 1 path ends with the M on the right.

There are 4 paths:
black, red; black purple;
blue orange; blue, green


The name arrangement is like Pascal's Triangle.

The number of letters in your name determines how many rows you use.

The sum of the numbers in the last row tells you how many paths will spell your name.


## Example 1

Determine how many different paths will spell PASCAL if you start at the top and proceed to the next row by moving diagonally left or right.
Write the triangle coefficients




Shamrock Paths:

- How many different ways can you spell Shamrock?
- Explain how you know your answer is correct.


## S

## H H <br> A A A M M M M

 $R \mathrm{R} R \mathrm{R} \mathrm{R}$
OOOOOO
${ }_{K}^{C} K_{K}^{C}{ }^{C} K_{K}^{C} K_{K}^{C}{ }^{C} K_{K}^{C}$

## 2 Checkers Problems



## Example 2: Counting paths on a Checkerboard.

On the checkerboard shown, the checker can travel only diagonally upward. It cannot move through a square containing an X . Determine the number of paths the checker's current position to the top of the board?

1. There is one path possible into each of the squares diagonally adjacent to the checker's starting position.
2. From the second row, there are 4 paths to the third row: one path to the 3rd square from the left, two to the 5th square and one to the


Therefore the answer is $5+9+8+8=30$ 7th square.
3. The square containing an $X$ gets a zero or no number since there are no paths through this blocked square.


A checker is placed on a checkerboard as shown. The checker may move diagonally upward. How many paths are there to the top of the board?


A checker is placed on a checkerboard as shown. The checker may move diagonally upward. Although it cannot move into a square with a red square, the checker may jump over the X into the diagonally opposite square. How many paths are there to the top of the board?


What question goes with this solution?
animals on the
london underground


## 3

## Routes

Problems

How many routes (moving to the right and down) can the cyclist take to get to school?

How many routes from $x$ to $y$ moving only to the right and up?


## Example

How many paths lead from $A$ to $B$, moving only east and south?

| A | $\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 1 | 2 | 3 | 4 |
| 1 | 3 | 6 | 1 | 3 | 6 | 10 |
| 1 | 4 | 10 | 11 | 14 | 20 | 30 |
| $1$ | 5 | 15 | 26 |  | 46 | 76 |

There are 76 paths from $A$ to $B$.

How many routes that move right and up start at $A$ (your home) and go to B (the school) stopping by your favourite coffee shop (the dot)?




## The Pinball Game

What is the probability that the ball will end up in any given bin?

The gray lines indicate the paths. There are 5 bins where the marble can finish.

## There are 16 paths (sum of the number of paths to each bin) and the ball is equally likely to follow any of the paths.

> -Probability $=1 / 16$ to end in the 1 st (leftmost) bin.
> -Probability $=4 / 16$ to end in the 2 nd bin.
> -Probability $=6 / 16$ to end in 3 rd bin.
> -Probability $=4 / 16$ to end in 4 th bin.
> -Probability $=1 / 16$ to end in the 5 th bin.


Number of path ending in each bin. The $5^{\text {th }}$ row of Pascal's Triangle because there are 5 bins.


How many routes exist for the marble?

How many routes exist for the marble?


How many routes exist for the plinko disk?

## How does Pascal's triangle relate to anything real and/or useful? <br> Look at the following graphs...

3


1



12th Row of Pascal's Triangle




