EXERCISE 23B

1 Find k in these probability distributions:

a | x | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | 0.3 | k | 0.5 |

b

x	0	1	2	3
$\mathrm{P}(X=x)$	k	$2 k$	$3 k$	k

2 The probabilities of Jason scoring home runs in each game during his baseball career are given in the following table. X is the number of home runs per game.

x	0	1	2	3	4	5
$P(x)$	a	0.3333	0.1088	0.0084	0.0007	0.0000

a State the value of $P(2)$.
b What is the value of a ? Explain what this number means.
c What is the value of $P(1)+P(2)+P(3)+P(4)+P(5)$? Explain what this means.
d Draw a probability distribution spike graph of $P(x)$ against x.

3 Explain why the following are not valid probability distribution functions:
a

x	0	1	2	3
$P(x)$	0.2	0.3	0.4	0.2

b

x	2	3	4	5
$P(x)$	0.3	0.4	0.5	-0.2

4 Sally's number of hits in each softball match has the following probability distribution:

x	0	1	2	3	4	5
$\mathrm{P}(X=x)$	0.07	0.14	k	0.46	0.08	0.02

a State clearly what the random variable represents.
b Find k.
c Find: i $\mathrm{P}(X \geqslant 2)$
ii $\quad \mathrm{P}(1 \leqslant X \leqslant 3)$

Answers:

EXERCISE 23B

1 a $k=0.2 \quad$ b $k=\frac{1}{7}$
2 a $P(2)=0.1088$
b $a=0.5488$ is the probability that Jason does not hit a home run in a game.
c $P(1)+P(2)+P(3)+P(4)+P(5)=0.4512$ and is the probability that Jason will hit one or more home runs in a game.
d

3 a $\sum P\left(x_{i}\right)>1$ b $P(5)<0$ which is not possible
4 a X is the number of hits that Sally has in each match.
$X=0,1,2,3,4$, or 5
b $k=0.23$
c i $\mathrm{P}(X \geqslant 2)=0.79 \quad$ ii $\mathrm{P}(1 \leqslant X \leqslant 3)=0.83$

