Zscore Quiz

The mean height of a Brampton mouse is 15 cm with a standard deviation of 2 cm . What is the probability that a randomly selected mouse is between 12.75 cm and 15.5 cm in height?

Z-score Quiz B

The mean length of a Brampton maple leaf is 12 cm with a standard deviation of 3 cm . What is the probability that a randomly selected leaf is between 10.5 cm and 16.5 cm in length?

Z-score Quiz A
The mean height of a Brampton mouse is 15 cm with a standard deviation of 2 cm . What is the probability that a randomly selected mouse is between 12.75 cm and 15.5 cm in height?

Z-score Quiz B
The mean length of a Brampton maple leaf is 12 cm with a standard deviation of 3 cm . What is the probability that a randomly selected leaf is between 10.5 cm and 16.5 cm in length?
for $x=12.75$

$$
\begin{aligned}
z & =\frac{x-\bar{x}}{\sigma} \\
& =\frac{12.75-15}{2} \\
& =-1.125
\end{aligned}
$$

$$
\begin{aligned}
\text { for } x & =15.5 \\
z & =\frac{x-x}{v} \\
& =\frac{15.5-15}{2} \\
& =0.25
\end{aligned}
$$

$$
P(x<12.75)=0.1292
$$

$$
P(x<15.5)=0.5987
$$

in Between:

$$
P(12.75<x<15.5)=0.5987-0.1292
$$

$$
=0.4695
$$

\therefore There is a 46.95% the mouse will be between 12.75 and 15.5 cm in height

Another question:

The weights of bars of chocolate produced by a machine are normally distributed with a mean of 232 g and a standard deviation of 3.6 g . Find the proportion of the bars that could be expected to weight less than 233.91 g ?

Another question:

The weights of bars of chocolate produced by a machine are normally distributed with a mean of 232 g and a standard deviation of 3.6 g . Find the proportion of the bars that could be expected to weight less than 233.91 g ?

$$
\begin{aligned}
& \bar{x}=232 \mathrm{~g} \\
& \sigma=3.6 \mathrm{~g} \\
& x=233.91
\end{aligned}
$$

Another question:
The weights of bars of chocolate produced by a machine are normally distributed with a mean of 232 g and a standard deviation of 3.6 g . Find the proportion of the bars that could be expected to weight less than 233.91g?

$$
\begin{array}{rlr}
\bar{x}=232 \mathrm{~g} & z & =\frac{x-\bar{x}}{\sigma} \\
\sigma=3.6 \mathrm{~g} & & =\frac{233.91-232}{3.6}
\end{array}
$$

Another question:
The weights of bars of chocolate produced by a machine are normally distributed with a mean of 232 g and a standard deviation of 3.6 g . Find the proportion of the bars that could be expected to weight less than 233.91g?

$$
\begin{aligned}
& \bar{x}=232 \mathrm{~g} \\
& \sigma=3.6 \mathrm{~g} \\
& x=233.91
\end{aligned}
$$

$$
\begin{aligned}
z & =\frac{x-\bar{x}}{\sigma} \\
& =\frac{233.91-232}{3.6} \\
& =0.53
\end{aligned}
$$

$$
P(x<233.91)=0.7019
$$

70.19\%. of the bars should weigh less than 233.91 g .

Another question:

A normally distributed
variable x has a
standard
deviation of 3.9.
Also, 71.37% of
the data are
larger than
249.8. Find the
mean of x.

Another question:
A normally distributed

$$
P(x>249.8)=71.37
$$

$$
\text { variable } \mathrm{x} \text { has a }
$$

$$
\therefore P(x<249.8)=28 . \ln 3
$$

standard

$$
\rightarrow \text { from } z \text { score table }
$$

$$
z \text { score of } 0.2863 \text { is }-0.56
$$

deviation of 3.9.
Also, 71.37% of the data are larger than 249.8. Find the mean of x.

Another question:
A normally distributed

$$
\text { variable } x \text { has a }
$$

standard
deviation of 3.9.
Also, 71.37% of the data are larger than 249.8. Find the mean of x.

$$
P(x>249.8)=71.37
$$

$$
\therefore P(x<249.8)=28 . \ln 3
$$

\rightarrow from z score table
\rightarrow sub given information into formula

$\begin{aligned} z & =\frac{x-\bar{x}}{\sigma} \\ -0.56 & =\frac{249.8-\bar{x}}{3.9} \\ -2.184 & =249.8-\bar{x} \quad \\ 251.984 & =\bar{x} \quad \rightarrow \text { The mean of } x \\ & \text { is } 252 .\end{aligned}$

