Standard Deviation

Measure of Spread

Which graph matches each description?(i) mound shaped (ii) bell-curve (iii) left skew(iv) bi-modal (v) right skew (vi) u-shaped

Which graph could have: A mean of 16, a median of 16 and modes of 2 and 22?

Which graph could have: A mode of 4, median of 8 and a mean of 12?

Which graph could have: A mode of 34, median of 34 and a mean of 34?

Histograms for IQ Test Components

How similar is the data?

How much

spread is in

the data?

Measure of Spread

How consistent is the data?

> How tightly is the data grouped around the mean?

Rank in terms of the mean. Rank in terms of how spread out the data is.

Which class is better A or B? Why?

Which class is better A or B? Why?

Regular Standard Deviation

$$\bar{x} = \frac{\sum x}{n}$$

$$\sigma = \sqrt{\frac{\sum(\bar{x} - x)^2}{n}}$$

Calculate the standard deviation of 34, 35, 23, 45, 47, 39, 36.

Calculate the standard deviation of 34, 35, 23, 45, 47, 39, 36.

2	Calcul	ate pe	èces of	stan	dard	der. 7	formul	'a
			1					
	X	x-x	(x-x)		-			
	34	3	9		The Mar			
	35	2	4					
	23	14	196					
	45	-8	64					
	47	-10	100					
	39	-2	4					
	36	1	1					
199								

Calculate the standard deviation of 34, 35, 23, 45, 47, 39, 36.

154

1.3

40

=

-										
	2)	Calcu	late pe	èces of	Standa	rd de	v. for	nu	la	
		X	x-x	$(\overline{x}-x)^2$						
		34	3	9						
		35	2	4						
		23	14	196						
		45	-8	64						
		47	-10	100						
		39	-2	4						
		36	1	1						
						In the second second				

Standard Deviation with Frequencies

 $\frac{\sum f(\bar{x} - x)^2}{\sum f}$

X	80	90	70	60	50	40
freq	2	1	7	4	6	4

This actually means:

80	90	70	60	50	40
80		70	60	50	40
		70	60	50	40
		70	60	50	40
		70		50	
		70		50	
		70			

X	80	90	70	60	50	40
freq	2	1	7	4	6	4

X	frequency	x*freq,	x-x	$(\overline{x} - \chi)^2$	$f(\bar{x}-x)$
80	2	160	-20	400	800
90	1	90	-30	900	900
70	7	490	-10	100	700
60	4	240	0	0	0
50	6	300	10	100	600
40	4	160	20	400	1600

X	frequency	x*freq,	x-x	$(x - x)^2$	$f(\bar{x}-x)$
80	2	160	-20	400	800
90	1	90	-30	900	900
70	7	490	-10	100	700
60	4	240	0	0	0
50	6	300	10	100	600
40	4	160	20	400	1600

2	Calculate mean
	$\overline{X} = \overline{\Sigma \times * f}$
	= 1440
	= 60

X	frequency	x*freq,	x-x	$(x - x)^2$	$f(\bar{x}-x)$
80	2	160	-20	400	800
90	1	90	-30	900	900
70	7	490	-10	100	700
60	4	240	0	0	0
50	6	300	10	100	600
40	4	160	20	400	1600

