Mean, Mode, Median

Distributions

Measures of Central Tendency

Where is the middle?

What is the most representative value?

How can we
summarize a data
set in one
number?

Measures of Central Tendency

- Middle-most value.

- Most frequently occurring value.
- Highest bar on bar graph.

Mean

- Add up the values and divide by the number
(1) Find the median for each set of data.
A. $49,32,67,55,58$
B. $3.1,5.2,4.4,5.0,3.8,2.6,4.7$
C. $29,12,30,22,7,23,36,15,18,9$
D. $81.6,83.7,78.5,82.8,81.2,76.3,83.5,78.9$
E. $110,115,109,110,116,113,112,116,110$, 106, 113

If there are two in the middle, average them..

(2) The weekly salaries for 5 people who work at a Las Vegas hotel are given in the table.
A. What is the mean salary?
B. What is the median salary?

Star of stage show	$\$ 45,000$
Hotel manager	2,000
Chief chef	1,500
Publicity director	1,100
Lifeguard	400

For mean, add up the values.

> Then, divide by the count.
(3) Find the mode (or modes) for each set of data.

A. | Suit Sizes | | |
| :--- | :--- | :--- |
| 36 | 39 | 40 |
| 37 | 39 | 41 |
| 37 | 39 | 41 |
| 38 | 40 | 41 |
| 38 | 40 | 42 |
| 38 | 40 | 44 |
| 39 | 40 | 44 |

B. | Times in $50-\mathrm{m}$ Dash s$)$ | | | |
| :---: | :---: | :---: | :---: |
| 5.7 | 6.3 | 6.7 | 6.9 |
| 5.9 | 6.3 | 6.7 | 7.0 |
| 6.0 | 6.4 | 6.8 | 7.2 |
| 6.0 | 6.5 | 6.9 | 7.3 |
| 6.2 | 6.5 | 6.9 | 7.3 |
| 6.3 | 6.7 | 6.9 | 7.5 |

Measures of Central Tendency

Median

- Can be more than one
- Eg. Clothing sizes
- Need to sort data, that's a little hard to do.
- Not influenced by outliers.
- Sometimes not possible in the data set
- Useful for a small range or in bar graphs.

Mean

- Easy to calculate
- Works for all data
- Influenced by outliers.

Example 6 Measuring Central Tendency

Describe the central tendency of each of the following monthly incomes for six salespeople working on commission using the most appropriate measure.
(a) January: $\$ 1241, \$ 1499, \$ 2020, \$ 1371, \$ 1622, \$ 1853$

Solution

(a) Mean $\frac{\$ 1241+\$ 1499+\$ 2020+\$ 1371+\$ 1622+\$ 1853}{6}=\$ 1601$

Median $\frac{\$ 1499+\$ 1622}{2}=\$ 1560.50$
Mode None as no repeated data
The values in this set are evenly distributed. Both the mean and median provide a good measure of the central tendency.

Complete each table. Write the letter for each frequency in the box above the corresponding value at the bottom of the page. Make a histogram for each set of data.

Test Scores for 40 Students									
80	89	66	73	60	97	53	79	70	58
71	99	44	88	80	69	72	83	86	76
91	77	61	83	57	88	49	77	75	95
64	85	75	72	94	66	84	77	86	82

Score	Tally	Frequency
$41-50$		\mathbf{U}
$51-60$		\mathbf{T}
$61-70$		\mathbf{E}
$71-80$	\mathbf{A}	
$81-90$	\mathbf{W}	
$91-100$		\mathbf{G}

U-SHAPED DISTRIBUTION

A U-shaped distribution occurs when there are peaks at either end of the range. It may also be described as a bimodal distribution. The scores from the game of spider solitaire form this type of distribution.

Spider Solitaire

Spider Solitaire Scores

Score	$400-449$	$450-499$	$500-549$	$550-599$	$600-649$	$650-699$	$700-749$	$750-799$	$800-849$
Frequency	15	10	6	4	0	4	6	10	15

UNIFORM DISTRIBUTION

When each outcome has a similar frequency, it is called a uniform distribution. The height of each bar is roughly equal. This is the distribution you would expect from an experiment such as rolling a die.

The Die-Rolling Game

The Die-Rolling Game

Score	1	2	3	4	5	6
Frequency	18	17	18	18	16	19

MOUND-SHAPED DISTRIBUTIONS

Dice Sums
In this distribution, there is an interval with the greatest frequency, and the frequencies of all other intervals decrease on either side of that. The frequency distribution then takes on a mound shape. Rolling a pair of dice and recording the sum results in this type of distribution.

Dice Sums

Frequency

Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	1	2	3	4	5	8	6	3	2	1	0

Each of there three distributions is symmetric.

SKEWED DISTRIBUTIONS

In a skewed distribution, the interval or group of intervals that contains the greatest frequencies is near one end of the histogram. As a result, these distributions seem to tail off to the left or right. The direction of the skew is determined by the direction the mean has shifted. This will be discussed in detail in Section 3.2.) Scores from a game of solitaire produce a distribution that is skewed to the right (right-skewed).

Solitaire

Score	$0-19$	$20-39$	$40-59$	$60-79$	$80-99$	$100-119$	$120-139$	$140-159$
Frequency	20	15	12	7	5	2	1	1

Distributions and
Mean, Median and Mode

Example 5 Exploring Distributions and Central Tendency

Compare the following data sets. What is the relationship between the shape of the distribution and the mean, median, and mode?

Solution

In part (a), the distribution is mound-shaped and symmetric. The mean, median, and mode are all equal. In part (b), the distribution is skewed right. Notice that mode < median < mean. When the distribution is skewed left, you would find that mean < median < mode. The outliers affect the mean more than they do the median and mode. In addition, notice that the median is always between the mean and mode for non-symmetric distributions.

DIFFERENT DISTRIBUTIONS

For distributions that are symmetric about the centre, the mean and median will be approximately equal.

If the data set has symmetry, both the mean and the median should accurately measure the centre of the distribution.

If the data set is not symmetric, it may be positively or negatively skewed:
positively skewed distribution

negatively skewed distribution

Notice that the mean and median are clearly different for these skewed distributions.

Bimodal Distribution

Right-Skewed Distribution

Mean is approximately equal to the median

Flat Distribution

Left-Skewed Distribution

Mark Calculation:

When you calculate marks, you want to find the grade that is most representative of the student.

If marks are required to be calculated by average, which students benefit and which do not?

If marks are required to be calculated by mode, which students benefit and which do not?

Which graph matches each description?
(i) mound shaped
(ii) bell-curve
(iii) left skew (iv) bi-modal
(v) right skew
(vi) u-shaped

Which graph could have:
A mean of 16 , a median of 16 and modes of 2 and 22 ?

Which graph could have:
A mode of 4 , median of 8 and a mean of 12 ?

Which graph could have:
A mode of 34 , median of 34 and a mean of 34 ?

Histograms for IQ Test Components

