Correlation Co-efficient

 r
Relationship

Strength

How closely the points in the scatterplot fit in the straight line.

Perfect Positive
Correlation

Strong
Positive
Correlation

Weak
Positive
Correlation

No
Correlation

Weak Negative Correlation

Strong
Negative Correlation

Pearson

Correlation

Co-efficient

A mathematical measure of the strength of a linear relationship.

If r is positive, the relationship is positive. If r is negative, the relationship is negative.

If $|r|$ is $>=0.75$, the relationship is strong.
Else If $|r|$ is <0.75 and $>=0.5$, the relationship is moderate.
Else If $|r|$ is <0.5 and $>=0.25$, the relationship is weak.
Otherwise, there is no correlation.

If r is positive, the relationship is positive.
If r is negative, the relationship is negative.
If $|r|$ is $>=0.75$, the relationship is strong.
Else If $|r|$ is <0.75 and $>=0.5$, the relationship is moderate.
Else If $|r|$ is <0.5 and $>=0.25$, the relationship is weak.
Otherwise, there is no correlation.

Correlation Coefficient Formula

$$
r=\frac{n(\Sigma x y)-(\Sigma x)(\Sigma y)}{\sqrt{\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}}
$$

Correlation Coefficient Formula

Yuck.

$$
\mathbf{r}=\frac{\mathrm{n}(\Sigma \mathrm{xy})-(\Sigma \mathrm{x})(\Sigma \mathrm{y})}{\sqrt{\left[\mathrm{n} \Sigma \mathrm{x}^{2}-(\Sigma \mathrm{x})^{2}\right]\left[\mathrm{n} \Sigma \mathrm{y}^{2}-(\Sigma \mathrm{y})^{2}\right]}}
$$

Correlation Coefficient Formula

Yuck.

$$
r=\frac{n(\Sigma x y)-(\Sigma x)(\Sigma y)}{\sqrt{\left[n \sum x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}}
$$

Correlation Coefficient Formula

Yuck.

$$
r=\frac{n(\Sigma x y)-(\Sigma x)(\Sigma y)}{\sqrt{\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}}
$$

Both x and y need to be numbers
Only for linear relationships

Excel: =correl(y_values, x_values)

A2	*	\times	$\checkmark f x$	$=$ correl (C2:C7, $2.2: \mathrm{A} 7$			
4	A	B	C	D	E	F	G
1	Hours Studied	Watching TV	Exam Score				
2	10	8	72				
3	11	7	67				
4	15	4	81				
5	14	3	93				
6	8	9	54				
7	5	10	66				X
8							
9	Indep (X)	Depep (Y)	Slope	Y-int	r	$\mathrm{r}^{\wedge} 2$	
10	Study	Exam	2.7266187	43.53717	=corre	2:C7,A2:A7	
11	TV	Exam	-4.244635	101.1717	COR	(array1, array2)	
17							

Movie Activity

Your	Partner	Movie		
		Joker - Arthur Fleck (Joaquin Phoenix) is a	\quad	Gemini Man - An action-thriller starring Will Smi
:---				
pursued by a mysterious young operative that seemingly can predict his every move.				

$\mathrm{r}=1$	$\mathrm{r}=0.8$ (approx)	$\mathrm{r}=0.6$ [approx]	$\mathrm{r}=0$	$\mathrm{r}=-0.6$	$\mathrm{r}=-0.8$ (approx.]	$\mathrm{r}=-1$ (approx.]
Perfect line	Not so perfect	Even less perfect	Big blob	Not so perfect	More perfect	Perfect line
Positive slope	Positive slope	Positive slope	No slope	Negative slope	Negative slope	Negative slope
If you like it, so does your partner	If you like it, your partner probably does too.	If you like it, your partner might too	If you like it, you have no idea if your partner does	If you like it, your partner might not	If you like it, your partner probably does not	If you like it, your partner does not
Your value predicts your partners'	Your value sort of predicts your partners'	Your value rarely predicts your partners'	Your value has no relation to your partners'	The opposite of your value rarely predicts your partners'	The opposite of your value sort of predicts your partners'	The opposite of your value predicts your partners'

Co-efficient of Determination

r^{2} is between 0 and 1 .
It represents the proportion of the variation in one variable that can be explained by the other. Only used in linear models.

If r^{2} is 0.93 , then 93% of the variation in Y is due to X.
X is a student's Science aptitude score.
Y is a student's Average.
r is calculated to be 0.8.
What is r^{2} ?

What does the r^{2} value mean?
X is a student's Science aptitude score.
Y is a student's Average.
r is calculated to be 0.8.
What is $r^{2} ? \quad=0.8 \times 0.8$
$=0.64$
What does the r^{2} value mean?
X is a student's Science aptitude score.
Y is a student's Average.
r is calculated to be 0.8 .
What is r^{2} ?

$$
\begin{aligned}
& =0.8 \times 0.8 \\
& =0.64
\end{aligned}
$$

What does the r^{2} value mean?
64% of the variation in your average is due to your science aptitude. Maybe you are taking two science courses.

Suppose you are running an experiment to plot the likelihood of victory in a certain sport (y).

You plot each of these x values. What do the r2 values tell you about the importance of each factor in determining y ?

Is this causation?

B2		: \quad <	$v f x$	$=\mathrm{rsq}(\mathrm{C} 2: \mathrm{C} 7, \mathrm{~B} 2: \mathrm{B} 7$				
4	A	B	C	D	E	F	G	H
1	Hours Studied	Watching TV	Exam Score					
2	10	8	72					
3	11	7	67					
4	15	4	81					
5	14	3	93					
6	8	9	54					
7	5	110	66					
8								
9	Indep (X)	Depep (Y)	Slope	Y-int	r	$\mathrm{r}^{\wedge} 2$		
10	Study	Exam	2.7266187	43.53717	0.754837	0.569779		
11	TV	Exam	-4.244635	101.1717	-0.87837	=rsq(C2:C7	:B7	
12						RSQ(know	's, kn	

B2		:	$\Rightarrow f x$ C	=slope(C2:C7, $\mathrm{B} 2: \mathrm{B} 7$		
4	A			D	E	F
1	Hours Studied	Watching TV	Exam Score			
2	10	8	72			
3	11	7	67			
4	15	4	81			
5	14	1 3	93			
6	8	19	54			
7	5	-10	66			
8						
9	Indep (X)	Depep (Y)	Slope	Y-int	r	$\mathrm{r}^{\wedge} 2$
10	Study	Exam	2.7266187			
11	TV	Exam	=slope(C2:C7	C7, B2:B7		
12			SLOPE(kno	Wh_y's, kn	own_x's)	

A2	*	: \quad <	$\otimes f x$	$=\\| \mathrm{NTERCEPT}(\mathrm{C} 2: \mathrm{C} 7, \mathrm{~A} 2: \mathrm{A} 7$			
4	A	B	C	D	E	F	G
1	Hours Studied	Watching TV	Exam Score				
2	10	8	72				
3	11	7	67				
4	15	4	81				
5	14	3	93				
6	8	9	54				
7	5	10	66				
8							
9	Indep (X)	Depep (Y)	Slope	Y-int	r	$\mathrm{r}^{\wedge} 2$	
10	Study	Exam	2.7266187	=INTER	PT(C2:	2:A7	
11	TV	Exam	-4.244635	INTER	T(know	's, know	
12							

