CORRELATION IS NOT CAUSATION

Causal
 Relationships

Positive, Negative Correlations

Correlation

[, kor-ə-'lā-shən]
Two variables move in relation to each other. They both move up OR one goes up when the other goes down.

Pearson's linear relationship types

* Aka - Correlation Types OR Correlation Dire

Positive linear relationship
An example is a person's income that increases with age.

Negative linear relationship
An example is if a vehicle increases its speed, the time it takes to move decreases, and vice versa.

- A positive correlation is a relationship between two variables where if one variable increases, the other one also increases.
- A negative correlation is a relationship between two variables where if one variable increases, the other one decreases.

Does each set of variables show a positive correlation, negative correlation, or no correlation? Explain your reasoning.
(a)The distance Angel swims and the time she takes
(b)The distance Angel swims and the time Dolores spends studying
(c) The temperature and the amount of clothing people wear (d)The number of cats a dog sees and how often it barks
(e)The temperature in Vancouver and the temperature in Toronto
(f) The distance a jogger runs and the time the jogger runs

Correlation Coefficient

[,kór-ə-'lā-shən ,kō-ə-'fi-shənt]
A statistical measure of the strength of the relationship between the relative movements of two variables.

Strength of a Relationship

- A relationship between two variables is considered strong if the data is closely grouped around a line of best fit.

As the number of flu cases (X) increases, the number of flu searches (Y) also increases.

They are positively correlated.

When two things are correlated, one of three things is happening:

1. X causes Y (causation)
2. Y causes X (reverse-causation)
3. Z causes X and Y (spuriousness)

Flu Searches
\uparrow flu cases $(\mathrm{X}) \rightarrow$ flu searches (Y).
They are positively correlated.

Flu Searches
\uparrow flu cases (X) \rightarrow 个 flu searches (Y). They are positively correlated.

This means one of the following is happening:

Flu Searches
\uparrow flu cases $(\mathrm{X}) \rightarrow$ flu searches (Y). They are positively correlated.

This means one of the following is happening:
(1) \uparrow Flu cases (X) is causing \uparrow Flu searches (Y)

Flu Searches
\uparrow flu cases $(\mathrm{X}) \rightarrow$ flu searches (Y).
They are positively correlated.
This means one of the following is happening:
(1) \uparrow Flu cases (X) is causing \uparrow Flu searches (Y)
(2) \uparrow Flu searches (Y) is causing \uparrow Flu cases (X)

Flu Searches
\uparrow flu cases $(\mathrm{X}) \rightarrow$ flu searches (Y).
They are positively correlated.
This means one of the following is happening:
(1) \uparrow Flu cases (X) is causing \uparrow Flu searches (Y)
(2) \uparrow Flu searches (Y) is causing \uparrow Flu cases (X)
(3) A third factor is causing both \uparrow Flu cases (X) and \uparrow Flu searches (Y)

Flu Searches
\uparrow flu cases $(\mathrm{X}) \rightarrow$ flu searches (Y).
They are positively correlated.
This means one of the following is happening:
(1) \uparrow Flu cases (X) is causing \uparrow Flu searches (Y)
(2) \uparrow Flu searches (Y) is causing \uparrow Flu cases (X)
(3) A third factor is causing both \uparrow Flu cases (X) and \uparrow Flu searches (Y)

And we don't know which it is without replication, effective sampling and randomization.

Some evidence that it is reverse causation:
Aluminum in brain is caused by Alzheimer's.
"Fluoride makes your body absorb extra aluminum. And where does the aluminum go? Your brain.
And what metal shows up alarmingly in the brains of Alzheimer's victims? You guessed it." William Douglass, MD,

- Violent Crime Index
—Ice Cream Sales

Apple iPhone Sales Vs People Who Died by Falling down the Stairs

Spuriousness

Spuriousness

The opening diagram again.

CORRELATION IS NOT CAUSATION

To prove causation you need:

- A large sample size (replication)
- Random assignment
- Random sampling
- Control groups
- Double blinding
- A logical link between the variables.

A Frank Statement to Cigarette Smokers

RECENT REPORTS on experiments wilh mice have given
wide publicity 10 a heory that cigructe smok ing is in some way

Although condocted by decior of profersional standings, hesece exph
 be disregarded or lightyly dismisesed. Altention to the fact thate minent doctores and rexearch x ximntists have pubbicily questioned the claimed significance of these eaperiments.
Distrgegisted duthortioe polat out
\qquad 1. That medical reserich
 2. Thit tbere b bo greremen amoog the eathorilies rezurd 3. The ther
the c cunese.
the dinu staistsk purporings ol link cigretete esmokiog nith

We believe Lte prodeducts we make are not injurious to
wealhe
${ }^{\text {Weall }}$ We almays have and always will cooperate closely with
ase lask it it to sarcguard the putbic health. TOBACCO INDUSTRY
 andoned for lack of eridenee.
 dieax is 1 mater of d cop conemem to us.
Many poople have asked us what we are doing to meet the answer:

 triboted by hadridare compenice.
 coanstlog letillly of the undersigned. This group will be LI E TOBACCO INDUSTRY RLSEACH COMMITTE:

 ne intend 10 do about it. RECEMMOU COMMITTEE

RECENT REPORTS on experiments with mice have given wide publicity to a theory that eigarette smoking is in some way linked with lung cancer in human beings.

Although conducted by doctors of professional standing, these experiments are not regarded as conclusive in the field of cancer research. However, we do not believe that any serious medical research, even though its results are inconclusive should be disregarded or lightly dismissed.

At the same time, we feel it is in the public interest to call attention to the fact that eminent doctors and research scientists have publicly questioned the claimed significance of these experiments.

Distinguished authorities poiat out:

1. That medical research of recent years indicates many possible causes of lumg cancer.
2. That there is no agreement among the authorilies regarding what the cause is.
3. That there is no proof that cigaretite sanoking is one of the cnuses.
4. That statistics purporing io link cigaretie smoking with the disease coold apply with equal force to any one of many other aspects of modern IIfe. Indeed the ralidity of the statistics themselves is questioned by numerous seientists.

SMOKING ${ }^{\text {and }}$ HEALTH

REPORT OF THE ADVISORY COMMITTEE TO THE SURGEON GENERAL
OF THE PUBLIC HEALTH SERVICE
U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service

Example of Effective Random Assignment

1. Number all pill bottles.
2.(Get a friend to do this) Put in medication or not. Record which numbers have medication and which don't.
3.Get your subject to draw a bottle from the hat. Record which number they used.
4.After all the data is gathered, match up the bottle numbers and find out who had the medication and who didn't.
5.You need a friend to match the bottles with the numbers it so it is "double blinded". The subject doesn't know and you don't either.

EACH TIME A CIRCLE WAS SUCCESSFULLY DRAGGED INTO THE BOX..

THE PARTICIPANTS IN THE STUDY WERE RANDOMLY DIVIDED INTO THREE DIFFERENT GROUPS．

RESEARCHERS USE RANDOMIZED GROUPS SO THAT ANY DIFFERENCES BETWEEN THE GROUPS ARE DUE TO THE EXPERIMENT AND NOT DUE TO DIFFERENCES BETWEEN THE PARTICIPANTS THEMSELVES．

市齐省角解解初的
．．THIS WAY，ANY INDIVIDUAL DIFFERENCES AND QUIRKS BALANCE ONE ANOTHER OUT．
（THE LARGER THE GROUPS．THE BETTER．）

BANDOMUEEE！

角角初

的的的

OFTEN, ONE OF THE CONDITIONS IS CALLED THE "CONTROL," WHERE NOTHING IS CHANGED AT ALL.

IN THIS STUDY, THE CONDITIONS VARIED BY HOW MUCH PARTICIPANTS WERE REWARDED FOR THEIR TIME.

THE STUDY HAD THREE CONDITIONS: A CONTROL CONDITION AND TWO TREATMENT CONDITIONS. IN THE HIGH-PAYMENT CONDITION, PARTICIPANTS WERE GIVEN \$ 4 FOR THEIR WORK BEFORE STARTING THE TASK.

PARTICIPANTS IN THE LOW-PAYMENT CONDITION GOT A SMALLER REWARD OF 10ζ BEFORE STARTING THE TASK.

IN MOST EXPERIMENTS, THIS ONE INCLUDED, PARTICIPANTS KNOW ONLY ABOUT THEIR OWN CONDITION - THEY ARE "BLIND"

TO THE REST OF THE EXPERIMENT.

THE RESULTS SHOWED THAT PARTICIPANTS WHO WERE PAID MORE WORKED HARDER. THEY DRAGGED ABOUT 50\% MORE CIRCLES.

THEY BEHAVED IN ACCORDANCE WITH MARKET NORMS, WHERE YOU GIVE PRECISELY WHAT YOU ARE PAID FOR.

WHETHER AN INTERACTION IS FRAMED IN MARKET OR SOCIAL TERMS STRONGLY SHAPES OUR MOTIVATIONS AND ACTIONS.

I'M SO GLAD I COULD HELP THOSE SCIENTISTS BY GIVING MY TIME!

MY TIME IS WORTH MORE THAN 10द! I DON'T FEEL THAT I NEED TO WORK VERY MUCH FOR JUST 104.

ASKING THE PARTICIPANTS TO WORK WITHOUT MENTIONING ANYTHING ABOUT PAY SHOWED THE POWER OF SOCIAL NORMS: THAT WE WILL HAPPILY WORK HARD OUT OF GOODWILL ALONE.

AS SOON AS MONEY WAS INTRODUCED, EVEN JUST 10¢, THE TASK BECAME PAID LABOR - AND PEOPLE ADJUSTED THEIR EFFORT ACCORDINGLY.

1.Causal/Descriptive?

1. Causal/Descriptive? - Causal
2. Research Question
3. Causal/Descriptive? - Causal
4. Research Question - Does payment increase motivation?
5. Problem Unit
6. Causal/Descriptive? - Causal
7. Research Question - Does payment increase motivation?
8. Problem Unit - a person
9. Plan Unit -
10. Causal/Descriptive? - Causal
11. Research Question - Does payment increase motivation?
12. Problem Unit - a person
13. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
14. Replication -
15. Causal/Descriptive? - Causal
16. Research Question - Does payment increase motivation?
17. Problem Unit - a person
18. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
19. Replication - unknown
20. Sampling Technique -
21. Causal/Descriptive? - Causal
22. Research Question - Does payment increase motivation?
23. Problem Unit - a person
24. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
25. Replication - unknown
26. Sampling Technique - random from the university's list
27. Diversity Limitations -
28. Causal/Descriptive? - Causal
29. Research Question - Does payment increase motivation?
30. Problem Unit - a person
31. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
32. Replication - unknown
33. Sampling Technique - random from the university's list
34. Diversity Limitations - had to be on university's list, probably university students, in early 20s.
35. Random Assignment -
36. Causal/Descriptive? - Causal
37. Research Question - Does payment increase motivation?
38. Problem Unit - a person
39. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
40. Replication - unknown
41. Sampling Technique - random from the university's list
42. Diversity Limitations - had to be on university's list, probably university students, in early 20s.
43. Random Assignment - to 3 groups: payments of $\$ 4, \$ 0.05$, none 9. Variable -
44. Causal/Descriptive? - Causal
45. Research Question - Does payment increase motivation?
46. Problem Unit - a person
47. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
48. Replication - unknown
49. Sampling Technique - random from the university's list
50. Diversity Limitations - had to be on university's list, probably university students, in early 20s.
51. Random Assignment - to 3 groups: payments of $\$ 4, \$ 0.05$, none 9. Variable - (1) payment, (2) number of circles dragged in 3 minutes 10.Calculation -
52. Causal/Descriptive? - Causal
53. Research Question - Does payment increase motivation?
54. Problem Unit - a person
55. Plan Unit - a person in Ariely and Heyman's study from the university's study group.
56. Replication - unknown
57. Sampling Technique - random from the university's list
58. Diversity Limitations - had to be on university's list, probably university students, in early 20s.
59. Random Assignment - to 3 groups: payments of $\$ 4, \$ 0.05$, none
60. Variable - (1) payment, (2) number of circles dragged in 3 minutes 10.Calculation - average number of circles dragged in each group.

One day some papers catch fire in a wastebasket in the Dean's office. Luckily, a physicist, a chemist, and a statistician happen to be nearby. Naturally, they rush in to help. The physicist whips out a notebook and starts to work on how much energy would have to be removed from the fire in order to stop the combustion. The chemist works on determining which reagent would have to be added to the fire to prevent oxidation.

While they are doing this, the statistician is setting fires to all the other wastebaskets in the adjacent offices. "What are you doing?" the Dean demands.

To which the statistician replies, "To solve a problem of this magnitude, you need a large sample size."

Understand why each isn't random, then fix it.

Stand at subway entrance at Union Station at 7:00 am.

Stand at subway entrance at Union Station at 7:00 am.

Randomized - put times and locations (not all subways) in a hat. Draw them out.
Go to a few locations.

Go to the cafeteria period 2. Ask whoever is there your question.

Go to the cafeteria period 2. Ask whoever is there your question.

Randomized - Put rooms, hallways, cafeterias and times in a computer. Get it to randomly select a few locations and times.

Ask whoever answers the phone.

Ask whoever answers the phone.

Randomized: ask to speak to whoever's birthday is closest?

On-line surveys (same problem)

On-line surveys (same problem)

Randomized: Need a bank of email/house addresses. Get a computer to randomly select the people. Email or mail those people. Bug them to get them to respond.

Walk into forest and randomly select tree.

Walk into forest and randomly select tree.

Get a map of the forest. Blindfold yourself. Throw a dart. Go to that location, sample the tree closest to it.

