Random Sampling

Who to ask?

Franklin D. Roosevelt

Alf

1936 Literary Digest poll

- largest and most expensive poll
- a sample size of 2.4 million people

The Literary Digest
 ```NEW YORK OCTOBER 31, 1936```

Topics of the day

LANDON, 1,293,669; ROOSEVELT, 972,897

Final Returns in The Digest's Poll of Ten Million Voters $W_{\text {ell, the great battle of the ballots in the }}$ Poll of ten million voters, scattered throughout the forty-eight States of the
lican National Committee purchased The Literary Digest?" And all types and varieties, including: "Have the Jews purchased
returned and let the people of the Nation draw their conclusions as to our accuracy. So far, we have been right in every Poll. Will we be right in the current Poll? That, as Mrs. Roosevelt said concerning the President's reelection, is in the 'lap of the gods.'
"We never make any claims before election but we respectfully refer you to the animion of one of the most anoted citizens

- Landon would get 57% of the vote against Roosevelt's 43%
- Asked 1 out of 4 Americans.

WHat WENT WRONG with the PRESIDENTIAL POLLS?

Enevimifta
Aneres

$$
\begin{aligned}
& \text { IS } \\
& \text { OUR } \\
& \text { FACE } \\
& \text { RED! }
\end{aligned}
$$

Rewel the Nonember Itch tesue of
literaryDigest
10^{6}

Not Random Sampling!

Based on every telephone directory in the United States, lists of magazine subscribers, rosters of clubs and associations, a mailing list of about 10 million names was created.

Not Random Sampling!

Based on every telephone directory in the United States, lists of magazine subscribers, rosters of clubs and associations, a mailing list of about 10 million names was created.

Non-response Bias

Only 2.4 million of 10 million returned their ballots.

Not Random Sampling!

Based on every telephone directory in the United States, lists of magazine subscribers, rosters of clubs and associations, a mailing list of about 10 million names was created.

Non-response Bias

Only 2.4 million of 10 million returned their ballots.

> Sampling Errors are not fixed by a large sample size.

Simple Random Sample.

- Use Excel to generate a series of random numbers.
- Poll those people.
- Benefit: members are likely to represent population well
- Problem: you need a list of all the people.

	This is the official form for all the people at this address. It is quick and easy, and your answers are protected by law.	

Use a blue or black pen. Start here
 The Census must count every person living in the United States on Aprll 1,2010 .

 Betore you answer Question 1 , count the people living inthis house, ppartment, or mobile home using our guidelines. - Count all people, including babies, who ive and sleep here
most of the time. The Census Bureau also conducts counts in institutions
ind other places, so:

- Do not count anyone living away elther at college or in the Afmed Forces.
- Do nt ocunt anyone in a nusing home, jall, prison,
detention tacility, etc., on Apill 1,2010 Leave these people off your torm, even it they will retum to live here atere they leave college, the nursing home, the
military, aill, etc. Olherwise, they may be counted wice.
The Census must also include people without a permanent The Census must
place to stay, so:

. How many people were llving or staying in this house,
apartment, or mobile home on April 1,2010 ?
Number of people $=$

2. Were there any additional peoples staying here Mark x all that taply. Children, such as newbom babies or foster chidren
Relatives, such as adutl children, cousins, orin-laws Nolatreestatives, such as as roommates or or ive-in baby stiters Poople stivesing here temp
3. Is this additional peoop apart
or moblle home -
 Clear (whinout a monggage or or this houssenold free and Rented?
 Area Code + Number

OMB No. Co67-099-C: Approval Explos 12312011.
Fem D. 61 (1.55200n
USCENSUSBUREAU
 living here. This will be fersorson 1 .
What is Person 1 .s
What is Person 1 's name? Print name beolow.
Last Name
First Name
6. What is Person 1's sex? Mark X ONE box
T. Male Female
7. What is Person is age and what is Person 1's date of bith?

\rightarrow Note: Ploase answer Botrt question 8 about Hispanitic origin and
8. Is Person 1 of Hispanic, Latino, or Spanish origin?

No, no or Hispanic, Latino, or Spanish origin
Yes, Mexican, Mexican Am, Chicano
Yes, Puento Rican
Yes, Cuban

9. What is Person 1 's race? Mark x one or more boxes.

White
Black, Atrican Am., or Negro
Amenican Indian or Alaska Nan

$$
\begin{aligned}
& \begin{array}{l}
\text { Asian Indian } \\
\text { Chinase } \\
\text { Filloino }
\end{array} \text { Kapanese } \quad \text { Native Hawaian }
\end{aligned}
$$

and

Some other race - Print face.
10. Does Person 1 sometimes live or stay somewhere else?

No Yes - Mark x all that apply.
In college housing
In the miltary
\square
For chid custody
In jail or prison

2006
2011
2016

CENSUS FORMAT

SHORT FORM

RESPONSE RATE

LONG FORM
(SENT TO 1 IN 5 HOUSEHOLDS)

NATIONAL HOUSEHOLD SURVEY
(SENT TO 1 IN 3 HOUSEHOLDS)

LONG FORM
??\%
(SENT TO 1 IN 4 HOUSEHOLDS)

PERCENTAGE OF CANADIANS FILLING OUT THE CENSUS ONLINE

Systematic Sample

- Choose a random start point and then gather every X people after.
- Poll those people.
- Benefit: easier than simple random in a real world situation
- Problem: population may have groups, need large sample.

Stratified

Sample

- Choose randomly from naturally occurring groups.
- Poll those people.
- Benefit: easier than simple random in a real world situation
- Problem: groups might not be representative

- Quota sampling introduced by George Gallup to successfully to predict the winner of the 1936, 1940 and 1944 elections.
- Quota sampling forces the sample to fit a certain national profile by using quotas: The sample should have so many women, so many men, so many under 40 , so many over $40 .$. .
- Quota sampling introduced by George Gallup to successfully to predict the winner of the 1936, 1940 and 1944 elections.
- Quota sampling forces the sample to fit a certain national profile by using quotas: The sample should have so many women, so many men, so many under 40 , so many over 40 ...

1948 Presidential Election:

- Gallup's predicted breakdown of the vote was 50% for Dewey, 44% for Truman, and 6% for third-party candidates Strom Thurmond and Henry Wallace.
- Quota sampling introduced by George Gallup to successfully to predict the winner of the 1936, 1940 and 1944 elections.
- Quota sampling forces the sample to fit a certain national profile by using quotas: The sample should have so many women, so many men, so many under 40 , so many over 40 ...

1948 Presidential Election:

- Gallup's predicted breakdown of the vote was 50% for Dewey, 44% for Truman, and 6% for third-party candidates Strom Thurmond and Henry Wallace.
- The actual results of the election turned out to be almost exactly reversed: 50% for Truman, 45% for Dewey, and 5\% for third-party candidates.
- Quota sampling introduced by George Gallup to successfully to predict the winner of the 1936, 1940 and 1944 elections.
- Quota sampling forces the sample to fit a certain national profile by using quotas: The sample should have so many women, so many men, so many under 40 , so many over 40 ...

1948 Presidential Election:

- Gallup's predicted breakdown of the vote was 50% for Dewey, 44% for Truman, and 6% for third-party candidates Strom Thurmond and Henry Wallace.
- The actual results of the election turned out to be almost exactly reversed: 50% for Truman, 45% for Dewey, and 5\% for third-party candidates.

Ain't the way l heard it

Chicago Tribune

Convenience

 Sample- Choose people near to you.
- Poll those people.
- Benefit: really easy to implement.
- Problem: no accuracy what-so-over.

Voluntary
 Response Sample

- Ask who would like to participate
- Poll them
- Benefit: really easy to implement.
- Problem: no accuracy what-so-over.

a)How much • How many people were in Replication? the study?
- To be sufficient, there should be thousands.

Random Sampling

- Subjects are selected from a group/list/phone book using random numbers from a computer or drawing from a hat.

Convenience Sampling

- No list/group/phone book.
- Went to a location close by and asked whoever was there.

Voluntary Sampling

- Posted it in a public medium (internet, social media)
- Whoever wants to can respond.
a)Identify the
Problem Unit
a)Identify the Plan Unit
- Who you want your results to apply to
- Very general, no specifics
- Often: "A person"
- Who you actually tested
- Specific: include who, when, where if possible.
- Eg. A university student in the subject pool at the University of lowa in 2017 (Problem Unit - A person)
- Eg. A lab rat in University of Iowa in 2017 (Problem Unit - A person... hmm, that's some diversity bias for you)
a)What are the Diversity Limitations?
- First think of the subjects in your research pool. Then, think who wasn't included in that group.
- Generally, studies are conducted from university research pools.
- The lens of "Power" is helpful here. Groups in power conduct studies on other people in their group. For example, medical studies often are done on university aged white men.

Law of Large Numbers

A.1.4 determine, through investigation using class generated data and technology-based simulation models (e.g., using a random-number generator
on a spreadsheet or on a graphing calculator; using dynamic statistical software to simulate repeated trials in an experiment), the tendency of experimental probability to approach theoretical probability as the number of trials in an experiment increases (e.g., "If I simulate tossing two coins 1000 times using technology, the experimental probability that I calculate for getting two tails on the two tosses is likely to be closer to the theoretical probability of than if I simulate tossing the coins only 10 times")

Two ways of getting probability:

1. Run an experiment
2. Calculate it

Draw the tree

Probability

If you run an experiment a really, really, really, large number of times, then your experimental probability will approach your calculated (theoretical) probability.

Number of Tosses	Number of Heads	Probability of Heads
4	1	25%
100	64	64%
1000	582	58.2%
10,000	4989	49.89%

The Law of Large Numbers: Ten Trials

A Gambler is making a bet at a roulette table.
They are betting on RED or BLACK.
The last few rounds:

Small samples often yield more extreme results that large ones.

Large ones will be close to the theoretical probability.

Small ones
might be far off the theoretical probability.

Normally, Toronto has a murder every two weeks.

Last week there were three murders.

> It's time to increase the police force!!

A common

mathematical error

is that people ignore the sample size. accuracy of a statistic, the sample size is EXTREMEMLY important.

