Probability using Permutations and Combinations

The probability of the spinner landing on blue

even chance

The formula for theoretical probability:

\section*{$P(A)=\frac{n(A)}{n(S)}<$| Count how $\begin{array}{c}\text { Count how } \\ \text { many in } A \\ \text { many in } \\ \text { Sample Space }\end{array}$ |
| :---: |}

What is the probability that a 4-digit PIN doesn't have a repeated number?

What is the probability that a 4-digit PIN doesn't have a repeated number?

How many PINS have no repeats?

How many PINS exist in total?

What is the probability that a 4-digit PIN doesn't have a repeated number?

How many PINS have no repeats?

How many PINS exist in total?

Enter your PIN		
1	2	3
4	5	6
7	8	9
	0	Cancel

What is the probability that a 4-digit PIN doesn't have a repeated number?

How many PINS have no repeats?

$$
P(\text { no repeat })=\frac{n(\text { no repeat })}{n(\text { total PINs })}
$$

What is the probability that a 4-digit PIN doesn't have a repeated number?

How many PINS have no repeats?

How many PINS exist in total?

$$
P(\text { no repeat })=\frac{n(\text { no repeat })}{n(\text { total PINs })}
$$

$$
=\frac{{ }_{10} P_{4}}{10^{4}}
$$

What is the probability that a 4-digit PIN doesn't have a repeated number?

How many PINS have no repeats?

How many PINS exist in total?

$$
P(\text { no repeat })=\frac{n(\text { no repeat })}{n(\text { total PINs })}
$$

$$
=\frac{5,040}{10,000}
$$

What is the probability that a 4-digit PIN doesn't have a repeated number?

How many PINS have no repeats?

How many PINS exist in total?

$$
P(\text { no repeat })=\frac{n(\text { no repeat })}{n(\text { total PINs })}
$$

$$
\begin{aligned}
& =\frac{{ }_{10} P_{4}}{10^{4}} \\
& =\frac{5,040}{10,000} \\
& =0.504
\end{aligned}
$$

Five cards have the letters A, B, C, D, E on them. The cards are shuffled, what is the probability that A and B are together?

Five cards have the letters A, B, C, D, E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

How many decks exist in total?

Five cards have the letters A, B, C, D, E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

How many decks exist in total?

Five cards have the letters A, B, C, D, E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

$3!x$ __ places $x _\ldots$ can switch

How many decks exist in total?

Five cards have the letters A, B, C, D, E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

$3!\times 4$ places $\times 2$ can switch

How many decks exist in total?

Five cards have the letters A, B, C, D, E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

$3!\times 4$ places $\times 2$ can switch

How many decks exist in total?

Five cards have the letters A,B,C,D,E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

\square
\square

$$
P(A B)=\frac{n(A B)}{n(\text { total })}
$$

3 ! x 4 places $\times 2$ can switch

How many decks exist in total?

Five cards have the letters A,B,C,D,E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

$3!\times 4$ places $\times 2$ can switch

How many decks exist in total?

5 !

$$
P(A B)=\frac{n(A B)}{n(\text { total })}
$$

Five cards have the letters A,B,C,D,E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

2
1
$3!\times 4$ places $\times 2$ can switch

How many decks exist in total?

$$
P(A B)=\frac{n(A B)}{n(\text { total })}
$$

Five cards have the letters A,B,C,D,E on them. The cards are shuffled, what is the probability that A and B are together?

How many with $A B$ together?

2
1
$3!\times 4$ places $\times 2$ can switch

How many decks exist in total?

5 !

$$
P(A B)=\frac{n(A B)}{n(\text { total })}
$$

$$
=0.4
$$

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

Google was convinced that polo was the only sport with a 4-person team.

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

9 s	10 s
$\binom{n}{r}$	$\binom{n}{r}$

In total, how many groups?

Google was convinced that polo was the only sport with a 4-person team.

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

In total, how many groups?

Google was convinced that polo was the only sport with a 4-person team.

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

```
9s 10s
(\begin{array}{l}{3}\\{2}\end{array})(\begin{array}{l}{4}\\{2}\end{array})
```

In total, how many groups?

Google was convinced that polo was the only sport with a 4-person team.

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

$$
P(\text { equal })=\frac{n(\text { equal })}{n(\text { total })}
$$

In total, how many groups?

$$
\binom{7}{2}
$$

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

$$
\begin{array}{cc}
\hline 9 \mathrm{~s} & 10 \mathrm{~s} \\
\hline\binom{3}{2} & \binom{4}{2}
\end{array}
$$

$$
P(\text { equal })=\frac{n(e q u a l)}{n(\text { total })}
$$

In total, how many groups?

$$
\binom{7}{2}
$$

$$
=\frac{\binom{3}{2} \times\binom{ 4}{2}}{\binom{7}{2}}
$$

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

$$
\left.\begin{array}{cc}
9 s & 10 s \\
3 \\
2
\end{array}\right)\binom{4}{2}
$$

In total, how many groups?

$$
\binom{7}{2}
$$

$$
P(\text { equal })=\frac{n(\text { equal })}{n(\text { total })}
$$

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

$$
\begin{array}{cc}
\hline 9 \mathrm{~s} & 10 \mathrm{~s} \\
\hline\binom{3}{2} & \binom{4}{2}
\end{array}
$$

In total, how many groups?

$$
P(\text { equal })=\frac{n(\text { equal })}{n(\text { total })}
$$

In a team, there are 4 grade tens and 3 grade nines. Among them, 4 people need to be selected for a match. Find the probability of selecting an equal number of grade 9 s and 10 s for the game.

How many equal 9s and 10s?

$$
\begin{array}{cc}
\hline 9 \mathrm{~s} & 10 \mathrm{~s} \\
\hline\binom{3}{2} & \binom{4}{2}
\end{array}
$$

In total, how many groups?

$$
P(\text { equal })=\frac{n(\text { equal })}{n(\text { total })}
$$

