P(n,r)

What are each of the following?

1.0!	5.4!
2.1!	6.5!
3.2!	7.6!
4.3!	8.7!

How do you write:

92 \times 91 \times 90 \times 89?

$10 \times 9 \times 8$

 $10 \times 9 \times 8$ 10! 10! (10 - 3)!

 $10 \times 9 \times 8$ 10! 10! (10 - 3)!= P(10,3) $= {}_{10}P_{3}$

$P(n,r) \quad or \quad {}_{n}P_{r}$ $= \frac{n!}{(n-r)!}$

- P stands for permutations
- n is the number of items to be arranged
- r is the number of places to put them

Write as multiplication. 90 things, pick 3 = 90x89x88

- 1. 4 things, pick 2 4×3
- 6 things, pick 3
 6×≤×Ӌ
- **3.** 96 things, pick 3 96 × 95 × 94
- 4. 82 things, pick 2 82 x 81
- 7 things, pick 4
 7×6×5×4
- 5 things, pick 2
 S x 4
- 7. 10 things, pick 4 10x9x8x7

- 7 things, pick 4
 7×6×5×4
- n things, pick 2
 N X (n−1)
- 10. n things, pick 1
- **11. 256 things, pick 3** 256 × 255 × 254
- 12. x things, pick 2
- 13. x things, pick 3

x * (x-1) * (x-2)

14. 23 things, pick 4

23×22×21×20

Permutations #2 Write as a factorial fraction. 90 things, pick $5 = \frac{90!}{85!}$ 1. 4 things, pick 2 _ 4! 6 things, pick 3 $= \frac{6!}{3!}$ 2. 9 things, pick 5 $_{\pm}$ 9 $^{!}_{-}$ 3. 41 8 things, pick 3 = <u>8</u>! 7 things, pick 5 = 7! 5. 5 things, pick 2 = 5! 6. 10 things, pick 6 = 10! 4; 7.

8. 7 things, pick
$$4 = \frac{7!}{3!}$$

9. n things, pick $2 = n!$
 $(n-2)!$
10. n things, pick $r = n!$
 $(n-r)!$
11. 9 things, pick $7 = \frac{9!}{2!}$
12. x things, pick $3 = \frac{x!}{(x-3)!}$
13. x things, pick $3 = \frac{x!}{(x-7)!}$
14. 23 things, pick $9 = \frac{23!}{14!}$

Pe	Permutations #3	
W	rite as	s a factorial fraction.
90P	$s = \frac{90}{85}$	-
1.	5P4	= 5!
		1,
2	•	61
2.	6M3	= 6!
3	4P2	= 4!
.	41 2	= 4!
ļ		
4.	P(72	(4) = 72!
	•	$(,4) = \frac{72!}{68!}$
S .	35P5	= 35:
		301
6	n/ 22	201 - 321
6.	P(32	,30) = <u>32!</u> <u>2</u> !
		2;
7	76P3	= 7/01
`	101 3	= 76!
		/ 5 :

8.	106P4	= 106!
9.	P(90,4	$=\frac{90!}{86!}$
10.	88P4	= 88!
11.	P(60,3	0) = <u>60</u> ; 30;
12.	63P3 =	63!
13.	46P2 ≂	46!
14.	P(56,4)	= <u>56</u> ! 52!

8 horses into 2 places. That happens in n x (n-1) ways.

tracking?

Permutations #6 (Pick twos) Evaluate. P(11,2) = 11x10 = 110	
1. P(5,2) = 5×4	= 20
2. P(6,2) = 6×5	= 30
3. P(7,2) = 7×6	=42
4. [™]P(3,2) = 3×2	=6
5. P(9,2) = 9×8	= 72
- 6. P(10,2) = [O×	9 = 90

7.
$$P(8, 2) = 8 \times 7 = 56$$

8. $P(4,2) = 4 \times 3 = 12$
9. $_7P_2 = 7 \times 6 = 42$
10. $_5P_2 = 5 \times 4 = 20$
11. $_3P_2 = 3 \times 2 = 6$
12. $_4P_2 = 4 \times 3 = 12$

Permutations #4 <i>Evaluate</i> . <i>Notice</i> : $_{n}P_{(n-1)} = n!$ P(3,2) = 3! = 6	
1.	7P6 = 7! = 5040
2.	P(7,6) = 7! = 5040
3.	5P4 = 5! = 120
4.	6Ps = 6! = 720
5.	P(6,5) = 6 ! = 720
6.	P(2,1) = 2 = 2
7.	1P0 = ! = {

8.	$_{2}P_{1} = 2! = 2$
9.	P(3,2) = 3 ! = 6
10 .	P(1,0) = ! = {
11.	$_{3}P_{2} = 3! = 6$
12.	$_{4}P_{3} = 4! = 24$
13.	P(4,3) = 4! = 24
14.	P(5,4) = 5 / = 120

P(n,0)

P(9,0)

Put this in terms of the horse race.

How many horses?

How many places are we tracking?

P(n,0)

P(9,0)

Put this in terms of the horse race.

How many horses?

How many places are we tracking?

9 horses into 0 places. That happens in 1 way.

P(n,1)

P(15,1)

How many horses?

Put this in terms of the horse race.

> How many places are we tracking?

P(n,1) Put this in terms of the horse race. P(15,1) How many horses? How many places are we

15 horses into 1 place. That happens in 15 ways. tracking?

P(n,n+1)

Put this in terms of the horse race.

P(23, 24)

How many horses?

How many places are we tracking?

P(n, n+1)Put this in terms of the horse race. P(23, 24) How many horses? How many places are we tracking? 23 horses into 24 places. AHHH!! Bad news bears.

Permutations #5 Evaluate these odd-ball		
		itions.
1.	sPo	2
2.	1 P 1	> [
3.	2P0	=
4.	₄ P ₁	= 4
5.	P(1,	1) =
6.	2P2	= 2! = 2
7.	4P4	= 4! = 24

,0) - (
= error
= error
-
0) = {
= }
= 2
= error

[Factorial Questions] Write a factorial to represent the number of ways you can:

- 1. Arrange 5 books on a shelf 5 [
- 2. Rearrange the letters in SONG 4!
- 3. Send 6 cards to 6 friends.
- 4. Arrange 4 people for a picture 41
- 5. Have 4 horses finish a race 4

- Seat 6 people in a theatre 6 1
- 7. Order 16 pool balls
- 8. Draw 48 balls in a lottery. 48!
- 9. Arrange 12 eggs in a carton.
- 10. Arrange 3 cards in your hand.

[Permutation questions] Write a factorial fraction to represent the number of ways you can:

- 1. Arrange 7 out of 4 people for a picture $\frac{7!}{3!}$
- Seat 6 of 9 people in a theatre 9!
- Draw 6 balls from 48 in a lottery. 48!
- 4. Order 4 of 16 pool balls
 16!
 16!
 16!
 12!
 5. Arrange 3 of 5 cards in your hand. 5!
 2!

- 6. Arrange 3 out of 5 books on a shelf <u>s !</u> 21 3 letter words from 7. 4! SONG 1! 8. Send 4 of your 6 cards to 6! friends. Top 3 placement of 12 9. horses in a race 12! 91 10. Arrange 12 of 14 eggs in a carton.
 - 2!

[Counting questions.] Write an exponent to model how many ways can you make:

- 3 digit electronic lock combination (each 0-60)
 60³
- 2. 4 digit PIN 104
- 5 letter password 26⁵
- Outfits from 3 shirts, 4 pants, 2 hats 3×4×2

- 5. Meals from 3 appetizers, 4 main courses, 5 desserts 3×4+5 Postal Codes (L4F 5W3) 263×103 7. 3 digit internet colour (each 0-255) 2563 Phone numbers 905-345-8. 234 9. License Plates (BPMW 834) 264 × 103
- **10. 4 piece IP address (each** 0-255) 2.56 ⁴

Is it a factorial, permutation or counting question?

- Seat 6 of 9 people in a theatre perms
- 2. Arrange 4 people for a picture $f_{a} c f$
- 3. Have 4 horses finish a race $f_a \, cf$
- Outfits from 3 shirts, 4 pants, 2 hats
 count
- Draw 6 balls from 48 in a lottery. perm

 Arrange 3 out of 5 books on a shelf

perm

- 7. 5 letter password
- 8. Rearrange the letters in SONG $f_{a} \mathcal{A}$
- 9. Postal Codes (L4F 5W3)
- 10. Top 3 placement of 12 horses in a race $\mathcal{P}\mathcal{C}\mathcal{M}$
- 11. 3 digit locker combination (each 0-60)