Permutations

$P(n, r)$

What are each of the following?

$$
\begin{array}{ll}
1.0! & 5.4! \\
2.1! & 6.5! \\
3.2! & 7.6! \\
4.3! & 8.7!
\end{array}
$$

How do you write:

$92 \times 91 \times 90 \times 89 ?$

How do you write:

$$
\begin{aligned}
92 \times 91 \times 90 \times 89 & =\frac{32:}{88!} \\
& =\frac{92!}{(92-4)!} \\
& =P(92,4) \\
& ={ }_{92} P_{4}
\end{aligned}
$$

You have 10 horses in a race. How many ways can they place first, second or third?

You have 10 horses in a race.
$10 \times 9 \times 8$ How many ways can they place first, second or third?

You have 10 horses in a race. How many ways can they place first, second or third?

You have 10 horses in a race. How many ways can they place first, second or third?

$10 \times 9 \times 8$ $=\frac{10!}{7!}$

$$
\begin{aligned}
& =\frac{10!}{(10-3)!} \\
& =P(10,3) \\
& ={ }_{10} P_{3}
\end{aligned}
$$

$P(n, r) \quad$ or $\quad{ }_{n} P_{r}$
 n !
 $=\frac{n!}{(n-r)!}$

- P stands for permutations
- n is the number of items to be arranged
- r is the number of places to put them

Permutations \#1
Write as multiplication.
90 things, pick $3=90 \times 89 \times 88$

1. 4 things, pick 2
4×3
2. 6 things, pick 3
$6 \times 5 \times 4$
3. 96 things, pick 3
$96 \times 95,94$
4. 82 things, pick 2 82×81
5. 7 things, pick 4

$$
7 \times 6 \times 5 \times 4
$$

6. 5 things, pick 2

$$
5 \times 4
$$

7. 10 things, pick 4 $10 \times 9 \times 8 \times 7$
8. 7 things, pick 4

$$
7 \times 6 \times 5 \times 4
$$

9. \mathbf{n} things, pick 2

$$
n \times(n-1)
$$

10. n things, pick 1
11. 256 things, pick 3

$$
256 \times 255 \times 254
$$

12. x things, pick 2

$$
x \times(x-1)
$$

13. x things, pick 3

$$
x \times(x-1) \times(x-2)
$$

14. 23 things, pick 4

$$
23 \times 22 \times 21 \times 20
$$

Permutations \#2

Write as a factorial fraction.
90 things, pick $5=\frac{90!}{85!}$

1. 4 things, pick $2=\frac{4!}{2!}$
2. 6 things, pick $3=\frac{6!}{3!}$
3. 9 things, pick $5=\frac{9!}{4!}$
4. 8 things, pick $3=\frac{8!}{5!}$
5. 7 things, pick $5=\frac{7!}{2!}$
6. 5 things, pick $2=\frac{5!}{3!}$
7. 10 things, pick $6=\frac{10!}{4!}$
8. 7 things, pick $4=\frac{7!}{3!}$
9. \mathbf{n} things, pick $2=\frac{n!}{(n-2)!}$
10. n things, pick $r=n$!

$$
\overline{(m-r)!}
$$

11. 9 things, pick $7=\frac{9!}{2!}$
12. \mathbf{x} things, pick $3=\frac{x!}{(x-3)!}$
13. \mathbf{x} things, pick $\mathbf{y}=\frac{x!}{(x-y)!}$
14. 23 things, pick $9=\frac{23!}{14!}$
Permutations \#3
Write as a factorial fraction.
${ }_{90} P_{5}=\frac{90!}{85!}$
15. ${ }_{5} \mathbf{P}_{\mathbf{4}}=\frac{5!}{!!}$
16. ${ }_{6} \mathbf{P}_{\mathbf{3}}=\frac{6!}{3!}$
17. ${ }_{4} \mathbf{P}_{2}=\frac{4!}{2!}$
18. $\mathbf{P}\left(\mathbf{7 2 , 4)}=\frac{72!}{68!}\right.$
19. ${ }_{35} \mathbf{P}_{5}=\frac{35!}{30!}$
20. $P(32,30)=\frac{32!}{2!}$
21. ${ }_{76} \mathrm{P}_{3}=\frac{76}{73}$
22. ${ }_{106} \mathbf{P}_{4}=\frac{106!}{102!}$
23. $P(90,4)=\frac{90!}{86!}$
24. ${ }_{88} \mathrm{P}_{4}=\frac{88!}{84!}$
25. $P(60,30)=\frac{60!}{30!}$
26. ${ }_{63} \mathrm{P}_{\mathbf{3}}=\frac{63!}{60!}$
27. ${ }_{46} P_{2}=\frac{46!}{44!}$
28. $P(56,4)=\frac{56!}{52!}$

$P(n, 2)$

$\mathrm{P}(8,2)$
$=8 \times 7$

8 horses into 2 places.
That happens in $n \times(n-1)$ ways.

Permutations \#6
(Pick twos) Evaluate.
$P(11,2)=11 \times 10=110$

1. $\mathbf{P}(5,2)=5 \times 4=20$
2. $P(6,2)=6 \times 5=30$
3. $P(7,2)=7 \times 6=42$
4. $P(3,2)=3 \times 2=6$
5. $P(9,2)=9 \times 8=72$
6. $P(10,2)=10 \times 9=90$
7. $\mathbf{P}(\mathbf{8}, \mathbf{2})=8 \times 7=56$
8. $P(4,2)=4 \times 3=12$
9. ${ }_{7} P_{2}=7 \times 6=42$
10. ${ }_{5} P_{2}=5 \times 4=20$
11. ${ }_{3} P_{2}=3 \times 2=6$
12. ${ }_{4} P_{2}=4 \times 3=12$

Permutations \#4
Evaluate. Notice: ${ }_{n} P_{(m-1)}=n$!
$P(3,2)=3!=6$

1. ${ }_{7} \mathbf{P}_{6}=7!=5040$
2. $\mathbf{P}(7,6)=7!=5040$
3. ${ }_{\mathbf{s}} \mathbf{P}_{\mathbf{4}}=5!=120$
4. ${ }_{6} \mathbf{P}_{5}=6!=720$
5. $\mathbf{P}(6,5)=6!=720$
6. $\mathbf{P}(2,1)=2!=2$
7. ${ }_{1} \mathbf{P}_{0}=1!=1$
8. ${ }_{2} P_{1}=2{ }_{v}=2$
9. $\mathbf{P}(3,2)=3!=6$
10. $\mathbf{P}(1,0)=1!=1$
11. ${ }_{3} \mathbf{P}_{2}=3!=6$
12. ${ }_{4} \mathbf{P}_{3}=4!=24$
13. $P(4,3)=4!=24$
14. $\mathbf{P}(5,4)=5!=120$

$P(n, 0)$

Put this in terms of the horse race.

$P(9,0)$

How many horses?

How many
places are we tracking?

$\mathrm{P}(\mathrm{n}, 0)$

Put this in

 terms of the horse race. $P(9,0)$9 horses into 0 places.
That happens in 1 way.

How many horses?

How many
places are we tracking?

$P(n, 1)$

Put this in terms of the horse race.

$\mathrm{P}(15,1)$

How many horses?

How many
places are we tracking?

$P(n, 1)$

Put this in

 terms of the horse race. $\mathrm{P}(15,1)$15 horses into 1 place.
That happens in 15 ways.

How many
places are we tracking?

$P(n, n)$

Put this in terms of the horse race.
$P(15,15)$

How many horses?

How many
places are we tracking?

$P(n, n)$

Put this in

 terms of the horse race. $P(15,15)$15 horses into 15 places.
That happens in 15! ways.

$P(n, n+1)$

Put this in terms of the horse race.

$P(23,24)$

How many
places are we tracking?

$\mathrm{P}(\mathrm{n}, \mathrm{n}+1)$

Put this in terms of the horse race.

23 horses into 24 places.
AHHH!! Bad news bears.

How many
places are we tracking?

Permutations \#5
Evaluate these odd-ball permutations.

1. ${ }_{s} P_{0}=1$
2. ${ }_{1} P_{1}=1$
3. ${ }_{2} \mathrm{P}_{0}=1$
4. ${ }_{4} P_{1}=4$
5. $\mathbf{P}(1,1)=1$
6. ${ }^{2} \mathbf{P}_{2}=2!=2$
7. ${ }_{4} \mathbf{P}_{4}=4!=24$
8. $P(1,0)=1$
9. $\mathbf{1 P}_{\mathbf{2}}=$ error
10. ${ }_{0} \mathbf{P}_{\mathbf{1}}=$ error
11. ${ }_{\mathrm{o}} \mathrm{P}_{0}=1$
12. $P(0,0)=1$
13. ${ }_{4} P_{0}=1$
14. ${ }_{2} \mathbf{p}_{\mathbf{1}}=2$
15. ${ }_{4} \mathrm{P}_{6}=$ error

Order matters No repeats

Can repeat

All
Values

Factorial

Counting

Combination

Order matters No repeats

Permutation

some places
Only

Permutations \#7

[Factorial Questions]
Write a factorial to represent
the number of ways you can:

1. Arrange $\mathbf{5}$ books on a shelf $5!$
2. Rearrange the letters in SONG
3. Send 6 cards to 6 friends.
$6!$
4. Arrange 4 people for a picture

5. Have $\mathbf{4}$ horses finish a race

6. Seat 6 people in a theatre $6!$
7. Order 16 pool balls 16 !
8. Draw 48 balls in a lottery.

9. Arrange 12 eggs in a carton.

10. Arrange 3 cards in your hand.

Permutations \#8
[Permutation questions]
Write a factorial fraction to
represent the number of
ways you can:

1. Arrange 7 out of 4 people for a picture $\frac{7!}{3!}$
2. Seat 6 of 9 people in a theatre

$$
\frac{9!}{3!}
$$

3. Draw $\mathbf{6}$ balls from $\mathbf{4 8}$ in a lottery.

$$
\frac{48!}{42!}
$$

4. Order 4 of 16 pool balls

$$
\frac{16!}{12!}
$$

5. Arrange 3 of $\dot{5}$ cards in your hand. $\frac{5!}{2!}$
6. Arrange 3 out of 5 books on a shelf

$$
\frac{5!}{2!}
$$

7. 3 letter words from SONG

$$
\frac{4!}{1!}
$$

8. Send 4 of your 6 cards to friends.

$$
\frac{6!}{2!}
$$

9. Top 3 placement of 12 horses in a race

$$
\frac{12!}{9!}
$$

10. Arrange 12 of 14 eggs in a carton.

$$
\frac{14!}{2!}
$$

Permutations \#9

[Counting questions.]
Write an exponent to model
how many ways can you make:

1. 3 digit electronic lock combination (each 0-60) 60^{3}
2. 4 digit PIN 10^{4}
3. 5 letter password

$$
26^{5}
$$

4. Outfits from 3 shirts, 4 pants, 2 hats
$3 \times 4 \times 2$
5. Meals from 3 appetizers, 4 main courses, 5 desserts

$$
3 \times 4+5
$$

6. Postal Codes (L4F 5W3)

$$
26^{3} \times 10^{3}
$$

7. 3 digit internet colour (each 0-255)

$$
256^{3}
$$

8. Phone numbers 905-345234

$$
9^{9}
$$

9. License Plates (BPMW 834)

$$
26^{4} \times 10^{3}
$$

10. 4 piece IP address (each 0-255)

Permutations \#10
Is it a factorial, permutation or counting question?

1. Seat 6 of 9 people in a theatre perms
2. Arrange 4 people for a picture fact
3. Have 4 horses finish a race
fact
4. Outfits from 3 shirts, 4 pants, 2 hats
count
5. Draw 6 balls from 48 in a lottery.
perm
6. Arrange 3 out of $\mathbf{5}$ books on a shelf

$$
p e r m
$$

7. 5 letter password
```
Coun+
```

8. Rearrange the letters in SONG

9. Postal Codes (L4F 5W3)
count
10. Top 3 placement of 12 horses in a race
perm
11. 3 digit locker combination (each 0-60)

$$
\cos n t
$$

