Counting

ONMONDAY ${ }_{\text {In math lasss, }}$

Mrs. Fibonacci says,
"YOUKNOW, you can think of almost everything as a math problem."

On Tuesday I start having problems.

How many outfits can I make if I have 3 shirts, a belt and 2 pants?

How many outfits can I make if I have 3 shirts, a belt and 2 pants?

$=12$ outfits

Fundamental Counting Principle: Rule of Product:

If the first event can be performed in n ways
And the second event can be performed in m ways,
Together they are performed in $\mathrm{n} \times \mathrm{m}$ ways.

Rule of Sum

If we have A ways of doing something and B ways of doing another thing and we can not do both at the same time,
Then there are $A+B$ ways to choose one of the actions.

How many licence plates did we have?

$17,576,000$ or 17.6 million. We have 14.32 million people in Ontario.

$35,152,000$ or 35.2 million. We have 14.32 million people in Ontario.

$35,152,000$ or 35.2 million. We have 14.32 million people in Ontario.

Counting Questions:

1. A couple has narrowed down the choice of a name for their baby to four first names and 3 middle names. How many first-middle name choices will they have to choose from?
2. How many basic options of homes in a subdivision are available if the builder offers 5 basic floor plans, 3 roof styles and two exterior finishes?
3. How many outcomes are possible if a coin is tossed 5 times in succession?

With restrictions:

1. How many 7 digit numbers are possible if the first two digits cannot be 1 or 0 ?
2. A combination lock has 60 positions. To open the lock, you turn the dial to three numbers. No two consecutive numbers can be the same. How many combinations exist?
3. How many postal codes can exist?

How many internet addresses do we have？

IPv4 Explained

\longleftrightarrow
4 Octets \longrightarrow
192.168 .2
$20-65,535$ bytes
 $\leftarrow ー ー ー ー \rightarrow$

How many internet addresses do we have?

IPv4 Explained

192. 168. 2. 4 Octets \longrightarrow

20-65,535 bytes

$4,294,967,296$ or 4.3 billion. Currently 7 billion devices.

128 bits each
total range $=340$ undecillion possible addresses

2001:db8::ff00:42:8329

4 bytes each

total range $=4.3$ billion possible addresses
123.45.67.89

One address for each grain of sand on Earth.

IV101011010 10
0110101010101101 r
0110101 NAME ADRES「
OLIN 101 LOGIN Pis
an
$0110100101001010110^{1 \cdots}$ -
01101010 NAME ADRES. 01101001010010101101001 . 011010101011010101101011010

?

26 upper case
26 lower case 20 special characters
10 numbers
$=82$
(94 is technical)

82 82 82 82 82

26 upper case
26 lower case
20 special characters
10 numbers
=82
(94 is technical)

26 upper case 26 lower case 20 special characters 10 numbers
=82
(94 is technical)

26 upper case 26 lower case 20 special characters 10 numbers
=82
(94 is technical)

If selected randomly:
2,000,000,000,000,000 possible passwords 2,800,000,000 per second by 2011 computer 730,050 seconds to crack
202 hours
8 days.

26 upper case 26 lower case 20 special characters 10 numbers
=82
(94 is technical)

If selected randomly:
2,000,000,000,000,000 possible passwords 2,800,000,000 per second by 2011 computer 730,050 seconds to crack
202 hours
8 days.

2012 demo did it in 6 hours.
2017 demo did it in 2.2 hours.

CÖTADORMAIORITTE3ORERO

How many

symbols exist?

?

Types of knots
-single
Wrap
-long (10 different)
-Z
-S
-E knots

CÖTADORMAIORITTE3ORERO

How many

symbols exist?

12
 2

Types of knots
-single
-Z
-long (10 different)
-S
-E knots

Also:

- 14 colours. Can be mixed in groups of 2 .
- Variations in spacing.
- Seems to be a title cord.

Think they have found a name:

- Puruchuco - 3 knot "ZIP code"

