The Birthday Problem

The goal is to compute $P(A)$, the probability that at least two people in the room have the same birthday. However, it is simpler to calculate $P\left(A^{\prime}\right)$, the probability that no two people in the room have the same birthday. Then, because A and A^{\prime} are the only two possibilities and are also mutually exclusive, $P(A)=1-P\left(A^{\prime}\right)$.

For example, if we have 23 people, then the probability that no two people in the room have the same birthday is:

$$
P\left(A^{\prime}\right)=\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \cdots \times \frac{343}{365}
$$

And the probability that two people have the same birthday is:

$$
P(A)=1-\left(\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \cdots \times \frac{343}{365}\right)
$$

We can calculate this easily in a spreadsheet.
Set up these headings and numbers to begin:

	A	B	C	D	E	F
1	What is the probability that 2 people have the same Birthday?					
2	Person	Day if no pair	Possible Days	Prob	P(no pair)	P(at least 1 pair)
3	1	365	365	1	1	0

The formulas needed are:

A	B		C		D	F	
1	What is						
2	Person	Day if no pair	Possible Days	Prob	P(no pair)	P(at least 1 pair)	
3	1	365	365	=B3/C3	=D3	$=1-E 3$	
4	=A3+1	=B3-1	365	=B4/C4	=E3*D4	=1-E4	
5	=A4+1	=B4-1	365	=B5/C5	=E4*D5	=1-E5	
6	=A5+1	=B5-1	365	=B6/C6	=E5*D6	=1-E6	

Verify that your formulas produce these numbers:

\square	A	B	C	D	E	F
1	What is the probability that 2 people have the same Birthday?					
2	Person	Day if no pair	Possible Days	Prob	P (no pair)	P (at least 1 pair)
3	1	365	365	1	1	0
4	2	364	365	0.99726	0.997260274	0.002739726
5	3	363	365	0.994521	0.991795834	0.008204166
6	4	362	365	0.991781	0.983644088	0.016355912
7	5	361	365	0.989041	0.972864426	0.027135574
8	6	360	365	0.986301	0.959537516	0.040462484

Fill down so that the first column is about 120.
Notice that the probability that you will have 2 people with the same birthday in a room of 23 is 50%.
We have 31 students, the probability that two people have the same birthday is 73%.

Graph the probabilities with a scatterplot:

Show Ms. Gorski your spreadsheet when you are done.

