

Doughnuts'

Consider where the doughnuts are.

Doughnuts'

Then, reverse it.

Doughnuts'

Doughtnuts' is in green. They get highlighted

Doughnuts U Lemons

Mark where there are doughnuts.
Then lemons.

Doughnuts U Lemons

Mark where there are doughnuts.
Then lemons.

Doughnuts U Lemons

Or means that you colour it if there is at least one dot.

Doughnuts \(\) Lemons

Mark where there are doughnuts.
Then lemons.

Doughnuts \(\) Lemons

Mark where there are doughnuts.
Then lemons.

Doughnuts \(\Omega\) Lemons

And means that you colour it if there is at least two dots.

Pretzels' \(\) Lemons'

Mark where there are not Pretzels.
Then not lemons.

Pretzels' \(\) Lemons'

Pretzels' \(\) Lemons'

Boolean Algebra evaluates to only two answers.

Relational Operators

Operator	Meaning
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
=	Equal to
<>	Not equal to

Depending on what you give them, the kid is either happy or sad.

And Truth Table

Val 1		Val 2		Ans
T		T	=	T
T		F	=	F
F	\bigcap	T	=	F
F	\bigcap	F	=	F

And means that there are at least two marks.

OR Truth Table

Val 1		Val 2		Ans
T	U	T	=	T
T	U	F	=	T
F	U	T	=	T
F	U	F		F

Or means
that you
colour it if
there is at
least one dot.

NOT Truth Table

Value		Answer
T'	=	F
F'		T

$$P(A') = 1 - P(A)$$

4	Α	В
1	Apple	3
2	Dog	4
3	apple	3
4	APPLE	3.1
5		

$$=NOT(NOT(A3 <> A2))$$

=NOT(NOT(____))

 $=NOT(\underline{})$

=_____

1. Look in the cells. Fill in the values.

4	Α	В
1	Apple	3
2	Dog	4
3	apple	3
4	APPLE	3.1
5		

=NOT(NOT(A3 <> A2))

=NOT(NOT(apple <> Dog))

=NOT(NOT(____))

 $=NOT(\underline{})$

=_____

1. Look in the cells. Fill in the values.

4	Α	В
1	Apple	3
2	Dog	4
3	apple	3
4	APPLE	3.1
5		

$$=NOT(NOT(A3 <> A2))$$

$$=NOT(\underline{})$$

=____

2. Use BEDMAS. Evaluate the inner most bracket.

4	Α	В
1	Apple	3
2	Dog	4
3	apple	3
4	APPLE	3.1
5		

$$=NOT(NOT(A3 <> A2))$$

$$=NOT(NOT(\underline{T}))$$

$$=NOT(\underline{})$$

=_____

3. Then, do the next inner most bracket.

4	Α	В	
1	Apple	3	
2	Dog	4	
3	apple	3	
4	APPLE	3.1	
5			

$$=NOT(NOT(A3 <> A2))$$

$$=NOT(NOT(_T))$$

$$=$$
NOT($_{\underline{F}}$)

=____

4	Α	В
1	Apple	3
2	Dog	4
3	apple	3
4	APPLE	3.1
5		

$$=NOT(NOT(A3 <> A2))$$

$$=NOT(NOT(\underline{T}))$$

$$=NOT(\underline{F})$$

5. You are done!!