Theoretical Probability

A.1.1 probabilities represent the likelihood of a result of an experiment (e.g., spinning spinners; drawing blocks from a bag that contains different coloured blocks; playing a game with number cubes; playing Aboriginal stick-and-stone games) and the likelihood of a real-world event (e.g., that it will rain tomorrow, that an accident will occur, that a product will be defective).

Probability

A mathematical statement about how likely something is to occur.
Can be calculated using theoretical probability or using an experiment.

Theoretical Probability

$P(A)=\frac{n(A)}{n(S)}=\frac{\text { Number of } A \text { outcomes }}{\text { Total number of outcomes }}$

The total number of outcomes is also known as the sample space. It is written in \{ \}.

Sample Space $=$ \{ Black, White, White, Striped, White, Black, Black, Black, White, Striped \}

Sample Space $=$ \{ Black, White, White, Striped, White, Black, Black, Black, White, Striped \}

What is the probability you draw a striped marble?

$$
P(\text { Stripe })=\frac{n(\text { Striped })}{n(\text { Marbles })}
$$

Sample Space $=$ \{ Black, White, White, Striped, White, Black, Black, Black, White, Striped \}

$$
P(\text { Stripe })=\frac{n(\text { Striped })}{n(\text { Marbles })}
$$

Sample Space $=$ \{ Black, White, White, Striped, White, Black, Black, Black, White, Striped \}

$$
\begin{aligned}
P(\text { Stripe }) & =\frac{n(\text { Striped })}{n(\text { Marbles })} \\
& =\frac{2}{10}
\end{aligned}
$$

Sample Space $=$ \{ Black, White, White, Striped, White, Black, Black, Black, White, Striped \}

What is the probability you draw a striped marble?

$$
\begin{aligned}
P(\text { Stripe }) & =\frac{n(\text { Striped })}{n(\text { Marbles })} \\
& =\frac{2}{10} \\
& =\frac{1}{5}
\end{aligned}
$$

One card is drawn at random from the 9 cards. Calculate the probability that a triangle is drawn.

One card is drawn at random from the 9 cards. Calculate the probability that a triangle is drawn.

$$
P(\text { triangle })=\frac{n(\text { triangle })}{n(\text { total })}
$$

One card is drawn at random from the 9 cards. Calculate the probability that a triangle is drawn.

$$
\begin{aligned}
P(\text { triangle }) & =\frac{n(\text { triangle })}{n(\text { total })} \\
& =\frac{3}{9}
\end{aligned}
$$

One card is drawn at random from the 12 cards. Calculate the probability that a triangle is drawn.

$$
\begin{aligned}
P(\text { triangle }) & =\frac{n(\text { triangle })}{n(\text { total })} \\
& =\frac{3}{9} \\
& =\frac{1}{3}
\end{aligned}
$$

There are two "branches"
Outcome

(Heads and Tails)

- The probability of each branch is written on the branch
- The outcome is written at the end of the branch

We can extend the tree diagram to two tosses of a coin:

How do we calculate the overall probabilities?

- We multiply probabilities along the branches
- We add probabilities down columns

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Draw the probability tree.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Count up the valid outcomes.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Count up the valid outcomes.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Count up the valid outcomes.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

That was slow,
we can do
better.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

B	B^{\prime}
$1 / 5$	$4 / 5$

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Multiply along the lines you want.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Add up the lines

you want.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

That was slow,
we can do
better.

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

If the arrow is spun twice, what is the probability that it will stop on the blue at least once?

Some notation:

P (event) The probability of an event.

n (event) The number of times an event occurs.

P(event') The event doesn't occur. The opposite of the event.
$P($ event1 and event2) Both events occur.

P(event1 or event2) One event OR the other OR both events occur.

Some formulas:

$$
\begin{aligned}
& P(\text { event })=\frac{n(\text { event })}{n(\text { total })} \\
& P(\text { event })=1-P\left(\text { event }^{\prime}\right)
\end{aligned}
$$

$P($ event 1 and event 2$)=P($ event 1$) \times P($ event 2$)$

If the events are independent

A warning:

If it seems like it is taking a long time, you might have picked a really inefficient way to do the problem. Is the 1-P($\left.A^{\prime}\right)$ method easier?

NATIONAL BESTSELLER
 STRUCK BY LIGHTNING

THE CURIOUS

 WORLD OF PROBABILIMES JEFFREY S. ROSENTHAL"Like Freakonomics,
Struck by Lightning attacks conventional wisdom."
-Ottoms catien

Met my cousin at Disney world. How amazing.

$P($ Meeting Phil $)=\frac{n(\text { Phil })}{n(\text { People in USA })}$
 $$
=\frac{1}{230 \text { million }}
$$

$$
\begin{aligned}
& \begin{aligned}
P(\text { Meeting Phil }) & =\frac{n(\text { Phil })}{n(\text { People in USA })} \\
& =\frac{1}{230 \text { million }}
\end{aligned} \\
& \begin{aligned}
P(\text { Surprize })= & \frac{n(\text { People we saw closely })}{n(\text { People in USA })} \\
= & \frac{2000}{230 \text { million }} \\
= & \frac{1}{115,000}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
P(\text { Surprize }) & =\frac{n(\text { We know well })}{115,000} \\
& =\frac{500}{115,000} \\
& =\frac{1}{230}
\end{aligned}
$$

$$
\begin{aligned}
P(\text { Surprize }) & =\frac{n(\text { We know well })}{115,000} \\
& =\frac{500}{115,000} \\
& =\frac{1}{230}
\end{aligned}
$$

But, over a lifetime of visiting places, you will go to 230 places and it will probably happen.

$S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}$, THH, THT, TTH, TTT\}

Determine the members of the following sets. a.The set of vowels in the English alphabet b.The set of month names beginning with J
c.The set of national capital cities in North America d. The set of multiples of 11 which are less than 100

What is the smallest probability we can have?

What that value mean?

What is the largest probability we can have?

What that value mean?

15 A spinner is shown below.

On which of the following number lines does the point represent the probability of spinning
 an even number?

What is the probability of drawing a face card?

A fair die is thrown. List the sample space and calculate the probability of observing a multiple of three.

WHY DO WE FALL FOR THESE SCAMS?

- Urgency
- Desire to please
- Greed

PROBABILITY THAT A PHISHING MESSAGE SUCCEEDS 1 out of 10!

ASTEROID IMPACT

 hit the Earth and how much damage they can do (depending on size).

