MDM4U - Sample Test 1 - Probability - Sept 20, 2023

Name: Solution

Knowledge 🅸	Application 🖳	Communication	Thinking 600	Total	Percent
	25	:			
20	25	13	20	78	%

Knowledge

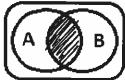
1. Fill in the last column with the word, formula or number indicated.

/8

- (a) Write down the formula for Conditional Probability.
- (b) Write down the formula for the Additive Principle.
- (c) What is the probability of rolling two 6s on a pair of dice?
- (d) What is the sample space for flipping a coin?
- (e) What is the Excel symbol for exponents?
- What is the probability of perfectly guessing all answers (f) on the SATs?
- What is an application of probability trees on computers? (g)
- Which event is more likely: A: you are a librarian OR (h) B: you are a librarian who loves books?

P(BIA) = P(ANB)
P(AUB) = P(A) + P(B) - P(ADB)
36
s = { H, T}
٨
0
AI decision tree
A: you are a librarian

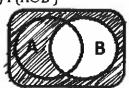
2. If P(A) is 0.4 and P(B) is 0.5, fill in the probabilities in the following table.

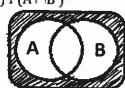

	A and B are independent		A and B are mutually exclusive		
P(A')	0.6	(1-0.4)	0,6	(1-6.4)	
P(A∩B)	0.2	(0.4×0.5)	0		
P(A∪B)	0.7	(0.4+0.5-0.2)	6.9	(0.4 +0.5)	
P(A B)	0.4	(0.2)	0	$\left(\frac{\circ}{\circ s}\right)$	

3. On the Venn diagram, shade in the space indicated. (Use the dots!!!)

/4

/8




(b) P(B')

(c) $P(A \cup B')$

(d) P(A'\cap B')

Application

D2

F2

G2

H2

12

4. This spreadsheet investigates the relationship between homework and test scores. Based on the data in column B and C, fill in **true or false** in the cells D2:15.

	Δ	8	C	D	E	F	G	н	1
1	Name	Homework	Test 1	A: Homework > 5	B: Test 1 > 80	A and B	A or B	Α'	A' and B
2	Bill Ding	7	78	7	F	F	7	F	F
3	Ida Knowe	10	97	T	T	T	7	=	-
4	Stan Dupp	0	56	F-	F	=	<u> </u>	<u>-</u>	
5	Carrie Oki	4	81	F	T	=	7	7	-

5. Which formulas would appear in the above cells?

6. Using the above spreadsheet, write a single formula for row 2 to calculate the following:

(a)	B' or A	= OR (NOT (E2), D2)
(b)	Displays true if the homework is over 3 or under 7; false otherwise.	= OR (B2 > 3, B2 < 7)

7. A hat contains 4 red tickets and 6 blue ones. Two tickets are drawn at random without replacement.

Red Blue # 15

Red Blue # 15

Red Blue # 15

Red Blue # 15

(a) Fill in the tree diagram.

(b) What is the probability that both tickets are

/6

/5

/4

/10

(c) What is the probability that at least one ticket is blue?

$$P(\text{at least 1B}) = 1 - P(RR)$$

= 1 - \frac{2}{15}
= \frac{13}{15}

/3

/4

Communication

8. Classify each pair of events as mutually exclusive or non-mutually exclusive.

	Event A	Event B	Classification
(a)	Jelly bean is red	Jelly bean is yellow	mutually Exclusive
(b)	Jelly bean is sour	Jelly bean is green	Not
(c)	It is boiling hot.	It is snowing.	mutually Exclusive

Classify each pair of events as dependent or independent.

10. What is the $P(A' \cup A)$? Explain why that is using a real-world example.

	Event A	Event B	Classification
(a)	Stayed up late.	Failed test.	Dependent
(b)	It is cloudy.	It is raining.	Dependent
(c)	You like cheese.	The dice rolled a 4.	Independent

/3 A and A are opposites, one occurs or the other one does. Because they are joined with an OR, that means P(1'UA) is 1. For example, if P(A) = win lottery, P(A') = don't win the Prob

you win or you don't win is 1007. one of those 2 things must

11. A student was asked "If you are a golfer, what is the probability you will be hit by lightning?" Explain why their answer, found below, is incorrect.

P(golfer / lightning) = P(golfer) x P(lightning) }

= 0.0404 × 0.000068

10.0000000274

shouldbe

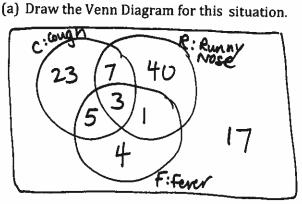
more likely to be hot by lightning. These are dependent events so you can use that formula.

>(4) Actual Ansner 15 2.74 x10⁻⁰¹

these. Hem+Explain

this is a given that situation, so we need conditional probability.

P(Light | Golf) = P(Lng)


should be used. P(G)

60 Thinking

12. In a recent medical survey of 100 randomly selected people in Calgary during the month of January, the following observations were made:

/10

- 38 people are coughing
- 51 people have runny noses.
- 13 people have fevers.
- The number of people coughing with runny noses is 10.
- The number of people with runny noses and fevers is 4.
- The number of people coughing with fevers is 8.
- The number of people coughing with fevers and runny noses is 3.

(b) What is probability that a Calgarian is healthy?

outside region

(c) What is the probability that a Calgarian only has a cough?

$$P(\text{only cough}) = \frac{23}{100}$$

(d) What is the probability that a Calgarian has a cough if you see their nose running?

13. Two machines, A and B produce 40% and 60% of the daily output respectively. Each machine also produces a total of 3% (A) and 5% (B) of items that are defective. An item is selected and is found to be defective. Find the probability that it came from machine B.

Machine Defect
$$A 0.4 = 0.03 = 0.012 A, Defect$$

$$A 0.4 = 0.07 = 0.388$$

$$B 0.6 = 0.05 = 0.03 B, Defect$$

$$0K 0.95 = 0.57$$

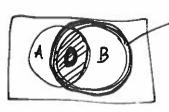
P (Machine B | Defect) =
$$P(B \cap Defect)$$

= $\frac{0.03}{0.012 + 0.03}$

= $\frac{0.03}{0.045}$

= $\frac{0.7143}{0.75}$

14. If Events A and B are mutually exclusive, what is P(A|B)?


Prove it using algebra AND (Venn diagrams OR a tree diagram). You will have algebra AND a diagram.

Algebra:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

mexclusive means $P(A \cap B) = 0$

Venn:

The question asks: Given you are in the B Bubble, what is the probability you are in A (shaded)?

Since there is no crossover there is no chance of