Writing Fileg

CHAPTER 5 = PERSISTING DATA

Ty(), DNAME); A NOTE ABOUT WRITING FILES

Android appiications run inside a virtual machine environment. This has some effects 1o be

aware of when working with certain aspects of the system, such as the filesystem. Java APIs like
FileOutputStream do not share a 1:1 relationship with the native file descriptor Inside the kemel,
Typically, when data Is written to the stream by using the write() method, that data Js written directly
Into @ memory buffer for the file and asynchronously written out to disk. In most cases, as long as your
fite access is strictly within the VM, you will never see this implementation detall. A file you just wrote

false); could be opened and immediately read without issue, for example.
¥

However, when dealing with removable storage such as an SD card on 2 mobile handset or tablet, we
may often need to guarantee that the file data has made it ali the way to the filesystem before returning
an operation to the user, since the user has the abllity to physically remove the storage medium, The

ite following Is a good standard code block to use when writing external files:

//Mrite the data
out.write();

/{Cleaxr the stream buffers
out. flush(};

//Sync all data to the filesystem
out.getfFD().sync();

//Close the stream

out.close();

The flush() method on an OutputStream is designed to ensure that all the data resident in the
stream is written out of the VM's memory buffer. In the direct case of FileOutputStream, this method
actually does nothing. However, in cases where that stream may be wrapped inside another (suchasa
BufferedoutputStream), this method can be essential in clearing out internal buffers, so It is a good
habit to get into by calling it on every file write before closing the stream.

Additionally, with external files, we can Issye a sync() to the underlying FileDescriptor, This method
will block untit all the data has been successfully written to the underlying filesystem, so it is the best
indicator of when a user could safely remove physical storage media without file corruption.

- External System Directories

- There are additional methods in Environment and Context that provide standard locations on external
 Storage where specific files can be written. Some of these locations have additional properties as well,

° Environment.getExternalStoragePublicDirectory(String type)

1Level 8
lirectory and used that s APILeve

| using the new directory ¢ Returns a common directory where all applications store media files. The

§

i) : contents of these directories are visible to users and other applications. In
b : partcular, the media placed here will likely be scanned and inserted into
: the device's MediaStore for applications such as the Gallery.

* Valid type values include DIRECTORY PICTURES, DIR ECTORY MUSIC,

DIRECTORY MOVIES, and DIRECTORY RINGTONES.

iy

L e I T

389

& II
i
5

CHAPTER 5 1 PERSISTING DATA

Context.getExternalFilesDir(String type)

API Level 8

Returns a directory on external storage for media files that are specific to the
application. Media placed here will not be considered public, however, and
won't show up in MediaStore.

This is external storage, however, so itis still possible for users and other
applications to see and edit the files directly: there is no security enforced.

Files placed here will be removed when the application is uninstalled, so it can
be a good location in which to place large content files the application needs
that one may not want on internal storage.

Valid type values include DIRECTORY_PICTURES, DIRECTORY_MUSIC, DIRECTORY_
MOVIES, and DIRECTORY_RINGTONES.

Context.getExternalCacheDix()

API Level 8

Returns a directory on internal storage for app-specific temporary files. The
contents of this directory are visible to users and other applications.

Files placed here will be removed when the application is uninstalled, so it can
be a good location in which to place large content files the application needs
that one may not want on internal storage.

Context.getExternalFilesDirs() and Context. getExternalCacheDirs()

API Level 19

Identical features as their counterparts described previously, but returns a list
of paths for each storage volume on the device {primary and any secondary
volumes)

For example, a single device may have a block of internal flash for primary
external storage, and a removable SD card for secondary external storage.

Context.getExternalMediabirs()

APl Level 21

Files placed in these volumes will be automatically scanned and added to the
device's media store to expose them to other applications. These will generally
also be visible to the user through core applications like the Gallery.

T —ia

B Note As of KitKat {API Level 19), permissions are no longer required to read and write the directory palhi
returned by getExternalFilesDir() and getExternalCacheDir(} for your application. Primary volumes
are still writable outside these directories with the aforementioned permissions. Secondary volumes (also new:
to the Kitkat APIs) are fully write-protected outside these directories, even if the WRITE_EXTERNAL_STORAGE
permission Is granted,

2 specific to the
+ however, and

s and other
ity enforced.

nstalled, so it can
plication needs

USIC, DIRECTORY

srary files. The
ations.

nstalled, so it can
plication needs

heDirs()}

but returns a list
any secondary

1 for primary
rnal storage.

nd added to the
ese will generally
allery.

and write the directory paths
lication. Primary volumes
iecondary volumes (also new
RITE_EXTERNAL_STORAGE

. CHAPTER 5 I/ PERSISTING DATA

' 5-5. Using Files as Resources
Problem

- Your application must utilize resource files that are in a format Andreid cannot compile into #¥¥Source 1D,

’ Solution
I (API Level 1)

~ Usetheassets directory to house files your application needs to read from, such as local HTML, comma-

~ feparated values (CSV), or proprietary data. The assets directory is a protected resource location for files in
00 Android application. The files placed in this directory will be bundled with the final APK but will not be

| processed or compiled. Like all other application resources, the files in assets are read-only.

B

How It Works

- There are a few specific instances that we've seen alread
content directly into widgets, such as WebView and MediaPlayer. However, in most cases, assets is best

accessed through a traditional InputStrean, Listings 5-17 and 5-18 provide an example in which a private
CSVfileis read from assets and displayed onscreen.

y in this book, where assets can be used to load

| Listing5-17. assets/data.csv

S-{ (73 ﬁﬂr' 'RX+
; < -elfilcp !

- John, 38,Red ave f+ r‘{) Q58 '—+
Sally,42,Blue - _/__i
 Rudy,31,Yellow

‘: Listing 5-18, Reading from an Asset File

5 | public class AssetActivity extends Activity {

] @0verride + 0

public void onCreate(Bundle savedInstanceState) { Stmi (d’r ‘*b
A ; super.onCreate(savedInstanceState); owr coo(.g,
B TextView tv = new TextView(this);

setContentView(tv);

-] &l é’
3 4 /@ / ‘_F syn*dx
. //Access application assets
= AssetManager manager = getAssets();

[/70pen our data file
T InputStream in = manager.open{"data.csv");

//Patse the CSV data and display
Arraylist<Persons cooked = parse(in);
§ StringBuilder builder = new StringBuilder();
s [q for(Person piece : cooked) {
' & builder.append(String. format("%s is %s years old, and likes the color %s“,
lﬂtf' piece.name, piece.age, piece.color));
- —— builder.append(’'\n'});
B
}

351

CHAPTER 5 7 PERSISTING DATA

tv.setText(builder.toStxing());
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e,printStackTrace();

}

/* Simple CSV Parser */
private static final int COL_NAME = 0;
private static final int COL_AGE = 1;
private static final int COL_COLOR = 2;
private Arraylist<Person> parse(InputStream in) throws IOException {
Arraylist<Person> results = new Arraylist<Persony(); "
BufferedReader reader = new BufferedReader(new InputStreamReader(in));
String nextline = null;
. while ((nextline = reader.readLine()) I= mull) {
~ String[] tokens = nextLine.split(",");
if (tokens.length I= 3) {
Log.w("CSVParser”, "Skipping Bad C5V Row");
_ continue;
}
//Add new parsed result
Person current = new Person();
current.name = tokens[COL_NAME];
current.color = tokens|{COL_COLOR];
current.age = tokens[COL_AGE];

results.add(current};

}

F 5(in.close();-“-

return results;

}

private class Person {
public String name;
public String age;
public String color;

public Person(} { }
}

n {

der{in));

CHAPTER 5 = PERSISTING DATA

B The key to accessing files in assets lies in using AssetManager, which will allow the application to
- Dpien any resource currently residing in the assets directory, Passing the name of the file we are interested
It to AssetManager . open() returns an InputStreamfor us to read the file data. Once the stream is read

~ Into memory, the example passes the raw data offto a parsing routine and displays the results to the user
- Interface,

Parsing the CSV

~ This example also illustrates a simple method of taking data from a CSV file and parsing it into a model
 Object (called Person in this case). The method used here takes the entire file and reads it into a byte array
or processing as a single string. This method is not the most memory efficient when the amount of data to
I read is quite Iarge, but for small files like this one it works just fine,

= The raw string is passed into a StringTokenizer instance, along with the required characters to use
9 breakpoints for the tokens: comma and new line. At this point, each individual chunk of the file can

~ bo processed in order. Using a basic state machine approach, the data from each line is inserted into new
- Person instances and loaded into the resulting list.

! |
—_——e

: : —
tion heeds to pFrs]st data that can laer be queried o vidualTécords.
1

\ i

. (AP1lLevel 1)
{, af as ;
| l?d lightweig

'I i e
effentelper th manage your data st;pre. SQLiteis a
syntax to build queries and managg data. Support

abask with eassistance?fa S
databage technology that utilize

~ fof § drpid SDK, maki 5y to set up nd use in your applicgtions.
; - | | _'H_FT____%;—::‘"
: ‘ — . I|I 1
- Cystomizing SO iy ITET AlloWs ¥ou th mariage the creagion and odificatio of the otz schema
i [tlis also an excallent place tc tan}-imﬁ

_~_It 8 credted. Listing 5-79 is af ex;
. Aligle taple that stores|basiclin orm

ordefault yalues youlmay wanf in the database when
ple offgw to customize thg hefﬁérﬁil['ﬂdeﬂo-cflm_gggtg ase with a

ation alxut people IJI
= [i I

—l,

-+
II

k- % i | i - {
.i_ Lijting 5. 1% BT 4K 1Fe0penH lper | .l" T e ‘““*?L—ﬁ.,__,___h_l
{p lic lassl."My lrerlf extend SQLiteOpen per { JI,-' _ — —_jf
. f | B . ,__‘k

‘I -
—\
""""“'—-"—u—::"h.

priVate/€tatic Fingl String DBNAME = "mjdbt; |
| pri 4 static finl int DB VERSTON -

.; static fingl String TABLE

public static finpl s _NAME = “p
public stag;ﬁﬁr?:ﬁ:g L_DATE

e
——

