|
A}
R&aO(l o] s
CHAPTER 5 1 PERSISTING DATA
Android supports all the standard Java file 1/0 APIs for create, read, update, and delete (CRUD)

operations, along with some additional helpers to make accessing those files in specific locations a little
more convenient. There are three main locations in which an application can work with files:

¢ Internal storage: Protected directory space to read and write file data.

*  External storage: Externally mountable space to read and write file data. Requires
the WRITE_EXTERNAL_STORAGE permission in API Level 4+, Often, this is a physical SD
card in the device.

¢ Assets: Protected read-only space inside the APK bundle. Good for local resources
that can't or shouldn't be compiled.

While the underlying mechanism to work with file data remains the same, we will look at the details thai
make working with each destination slightly different.

How It Works 1

As we stated earlier, the traditional java FileInputStreamand F ileQutputStream classes constitute the
primary method of accessing file data. In fact, you can create a File instance at any time with an absolute
pathlocation and use one of these streams to read and write data, However, with root paths varying on
different devices and certain directories being protected from your application, we recommend some
slightly more efficient ways to work with files.

Internal Storage ™ 10 Files

In order to create or modify a file’s location on internal storage, utilize the Context .openFileInput() and
Context.openFileQutput() methods. These methods require only the name of the file as a parameter,
instead of the entire path, and will reference the file in relation to the application's protected directory spaci,
regardless of the exact path on the specific device. See Listing 5-14.

Listing 5-14. CRUD a File on Internal Storage
public class InternalActivity extends Activity {

private static final String FILENAME = "data.txt";

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

//Create a new file and write some data
try {

FileOutputStream mOutput = openFileOutput(FILENAME, Activity.MODE PRIVATE);
String data = "THIS DATA WRITTEN TO A FILE";
mOutput.write(data.getBytes());

mOutput . flush(); i
mOutput.close(); '




CHAPTER 5 11 PERSISTING DATA

lelete (CRUD) } catch (FileNotFoundException e) {
clocations a little e.printStackTrace();
h files: } catch (IOException e) {
e.printStackTrace();
equires
thysical SD //Read the created file and display to the screen
try {
FileInputStream mInput = openFileInput (FILENAME);
sources byte{] data = new byte[128];
mInput.read(data);
look at the details that mInput.close();
String display = new String(data);
tv.setText(display.trim());
} cateh ( FileNotFoundException e) {
e.printStackTrace();
es constitute the } catch (I0Exception e) {
e with an absolute e.printStackTrace();
raths varying on
wnmend some
//Delete the created file
deleteFile(FILENAME) i
}
MFilelnput() and This example uses Context. openFileOutput() to write some simple string data out to a file. When
faa parameter, - \ising this method, the file will be created if it does not already exist. It takes two Parameters: a file name and
*cted directory space, 1 . Bn operating mode. In this case, we use the default operation by defining the mode as MODE_PRIVATE. This
5 . Mode will overwrite the file with each new write operation; use MODE_APPEND if you prefer that each write
T #ppend to the end of the existing file,
A 4 After the write is complete, the example uses Context, openFileInput(), which requires only the file
i name again as a parameter to open an InputStream and read the file data. The data will be read into a byte
7 nrray and displayed to the user interface through a TextView. Upon completing the operation, Context.
k deleteFile() is used to remove the file from storage,
. W Note Datais written to the file streams as bytes, so higher-ievel data (even strings) must be converted into
; - and out of this format,
This example leaves no traces of the file behind, but we €ncourage you to try the same example without
tunning deleteFile() at the end in order to keep the file in storage Using the SDK’s DDMS tool with an
-~ tmulator or unlocked device, you may view the filesystem and can find the file this application creates in its
IDE_PRIVATE); - respective application data folder,

i
J

Because these methods are a part of Context, and not bound to an activity, this type of file access can
. occur anywhere in an application that you require, such as a BroadcastReceiver or even a custom class,
. Many system constructs either are a subclass of Context or will pass a reference to one in their callbacks.
* This allows the same open/close/delete operations to take place anywhere.




CHAPTER & [ PERSISTING DATA

External Storage

The key differentiator between internal and external storage is that external storage is mountable, This
means that the user can connect his or her device to a computer and have the option of mounting that
external storage as a removable disk on the PC. Often, the storage itself is physically removable (such as an
SD card), but this is not a requirement of the platform.

[ Important  Writing to the external storage of the device will require that you add a declaration for
android.permission.WRITE_EXTERNAL_STORAGE to the application manifest. Reading from external storago
requires android.permission.READ_EXTERNAL_STORAGE as well on APi Level 19+.

= L m— SR

During periods when the device's external storage is either mounted externally or physically removed,
itis not accessible to an application. Because of this, it is always prudent to check whether external storage 4]
ready by checking Environment.getExternalStorageState(). "

Let’s modify the file example to do the same operation with the device’s external storage. See Listing 5.1 H

Listing 5-15. CRUD a File on External Storage

public class ExternalActivity extends Activity {

private static final String FILENAME = "data.txt";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

//Create the file reference
File dataFile = new File(Environment.getExternalStorageDirectory(), FILENAME);

//Check if external storage is usable
if(|Environment.getExternalStorageState().equals(Environment MEDIA_MOUNTED)) {
Toast.makeText(this, "Cannot use storage.", Toast.LENGTH_SHORT).show();
finish(};
return;

}

//Create a new file and write some data

try {
FileOutputStream mOutput = new FileOutputStream(dataFile, false);
String data = "THIS DATA WRITTEN TO A FILE";
mOutput.write(data.getBytes(});
mOutput.flush();
//Mith external files, it is often good to sync the file
mOutput.getFD().sync();
mOutput.close();

} catch (FileNotFoundException e) {
e.printStackTrace();




mountable. This
of mounting that
:movable (such as an

leclaration for
Tom external storage

r physically removed,

ther external storaga i

torage. See Listing 5-15.

(), FILENAME);

[A_MOUNTED)) {
iT).show();

se);

CHAPTER 5 £ PERSISTING DATA

} catch (IOException e) {
e.printStackTrace(};

//Read the created file and display to the screen
try {
FileInputStream mInput = new FileInputStream(dataFile);
byte[] data = new byte[128];
mInput.read(data);
mInput.close();

String display = new String(data);
tv.setText(display.trim());

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Delete the created file
dataFile.delete();

With external storage, we utilize a little more of the traditional Java file 1/0. The key to working with
oxternal storage is calling Environment, getExternalStorageDirectory() to retrieve the root path to the
device’s external storage location.

Before any operations can take place, the status of the device’s external storage is first checked with
Environment.getExternalStorageState(). If the value returned is anything other than Environment.
MEDIA_MOUNTED, we do not proceed because the storage cannot be written to, so the activity is closed.
Otherwise, a new file can be created and the operations may commence.

The input and output streams must now use default Java constructors, as opposed to the Context
convenience methods, The default behavior of the output stream will be to overwrite the current file or to
create it if it does not exist. If your application must append to the end of the existing file with each write,
change the Boolean parameter in the FileOutputStream constructor to true,

Often, it makes sense to create a special directory on external storage for your application’s files. We can
accomplish this simply by using more of Java's file API. See Listing 5-16,

Listing 5-16. CRUD a File Inside a New Directory

public class ExternalActivity extends Activity {

private static final String FILENAME = "data.txt";
private static final String DNAME = "myfiles";

@0verride

public void onCreate(Bundle savedInstanceState) {
super. onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

387




CHAPTER 5 11 PERSISTING DATA

/{Create a new directory on external storage
File rootPath = new File(Environment.getExternalStorageDirectory (), DNAME ) ;
if(1rootPath.exists()) {
rootPath.mkdirs();
}

//Create the file reference
File dataFile = new File(rootPath, FILENAME);

//Create a new file and write some data

try {
FileQutputStream mOutput = new FileQutputStream(dataFile, false);
String data = "THIS DATA WRITTEN TO A FILE";
mOutput.write(data.getBytes());
mOutput., flush();
//With external files, it is often good to wait for the write
mOutput.getFD().sync();

mOutput.close();

} catch (FileNotFoundException e) {
e.printStackTrace(};

} catch (IOException e) {
e.printStackTrace();

//Read the created file and display to the screen
try {
FileInputStream mInput = new FileInputStream(dataFile);
byte(] data = new byte[128];
mInput.read(data);
mInput.close();

String display = new String(data);
tv.setText(display.trim());

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

//Delete the created file
datafile,delete();

In this example, we created a new directory path within the external storage directory and used that
new location as the root location for the data file. Once the file reference is created using the new directory &
location, the remainder of the example is the same. i

b




