
CompareTo
Some more examples

public class Tree {
 private int height;
 private int age;
 private String type;

 public int getHeight()
 public int compareTo(Tree t)
}

Let’s say, I’m recording
information about trees for

the Ministry of Forestry.

Eventually, once I get
the basics out of the

way, I’m going to need
to make a report.

Someone might
ask, which are

the tallest trees?
I’m going to need
to find the max,

or - maybe - sort.

String max = array[0];
for (int i = 0; i < array.length; i++){
 if(array[i].compareTo(max)>0)
 max = array[i];
}

Tree max = array[0];
for (int i = 0; i < array.length; i++){
 if(array[i].compareTo(max)>0)
 max = array[i];
}

Objects, like Strings,
can’t use > or < or ==

to compare them.
Objects are too

complex.

We need to write our
own method to
compare them.

a: height = 12
 age = 34
 type = apple

b: height = 10
 age = 12
 type = banana

c: height = 11
 age = 6
 type = willow

d: height = 6
 age = 3
 type = pine

Tree a = new Tree(12, 34, “apple”);

Tree b = new Tree(10, 12, “banana”);

Tree c = new Tree(11, 6, “willow”);

Tree d = new Tree(6, 3, “pine”);

First, I have to
make choices

The way I intend to sort them, will
impact how I code compareTo.

a: height = 12
 age = 34
 type = apple

b: height = 10
 age = 12
 type = banana

c: height = 11
 age = 6
 type = willow

d: height = 6
 age = 3
 type = pine

Tree a = new Tree(12, 34, “apple”);

Tree b = new Tree(10, 12, “banana”);

Tree c = new Tree(11, 6, “willow”);

Tree d = new Tree(6, 3, “pine”);

Let’s sort by height.

me.compareTo(them)

Can use the instance
variables directly

Use the accessors and
the parameter name

public class Tree {
 private int height;
 private int age;
 private String type;
 public int getHeight()
 public int compareTo(Tree t)
}

Tree a = new Tree (12, 34, “apple”);
Tree b = new Tree (10, 12, “banana”);
a.compareTo(b);

a: height = 12
 age = 34
 type = apple

b: height = 10
 age = 12
 type = banana

public class Tree {
 private int height;
 private int age;
 private String type;
 public int getHeight()
 public int compareTo(Tree t)
}

Tree a = new Tree (12, 34, “apple”);
Tree b = new Tree (10, 12, “banana”);
b.compareTo(a);

a: height = 12
 age = 34
 type = apple

b: height = 10
 age = 12
 type = banana

me.equals(them)

Can use the instance
variables directly

Use the accessors and
the parameter name

me.equals(them)

public boolean equals (Tree t){

 if (height == t.getHeight())

 return true;

 else

 return false;

}

Equals Side of the Sheet

boolean

Equals Side of the Sheet

boolean
true false

Equals Side of the Sheet

boolean
true false
int double char

String

Equals Side of the Sheet

boolean
true false
int double char

String
parameter

Equals Side of the Sheet

boolean
true false
int double char

String
parameter

instance
accessors

Equals Side of the Sheet

me.compareTo(them)

Can use the instance
variables directly

Use the accessors and
the parameter name

My variables > Their accessors

My variables < Their accessors

My variables == Their accessors

1

-1

0

me.compareTo(them)
My variables > Their accessors

My variables < Their accessors

My variables == Their accessors

1

-1

0

public int compareTo (Tree t){

 if (height > t.getHeight())

 return 1;

 else if (height < t.getHeight())

 return -1;

 else

 return 0;

}

public int compareTo (Tree t){

 if (t.getHeight() < height)

 return 1;

 else if (t.getHeight() > height)

 return -1;

 else

 return 0;

}

public int compareTo (Tree t){

 if (height > t.getHeight())

 return 1;

 else if (height < t.getHeight())

 return -1;

 else

 return 0;

}

If I am bigger than them If they are smaller than me

The statements can
be rearranged.

public int compareTo (Tree t){

 if (t.getHeight() < height)

 return 1;

 else if (t.getHeight() > height)

 return -1;

 else

 return 0;

}

public int compareTo (Tree t){

 if (height > t.getHeight())

 return 1;

 else if (height < t.getHeight())

 return -1;

 else

 return 0;

}

public int compareTo (Tree t){

 if (t.getHeight() > height)

 return -1;

 else if (t.getHeight() == height)

 return 0;

 else

 return 1;

}

public int compareTo (Tree t){

 if (height == t.getHeight())

 return 0;

 else if (height < t.getHeight())

 return -1;

 else

 return 1;

}

CompareTo Side of the Sheet

CompareTo Side of the Sheet

sort

CompareTo Side of the Sheet

sort
instance first

Me

CompareTo Side of the Sheet

sort
instance first

Me
accessors

second THEM

CompareTo Side of the Sheet

sort
instance first

Me
accessors

second THEM
wins 1

CompareTo Side of the Sheet

sort
instance first

Me
accessors

second THEM
wins
loses

1
-1

CompareTo Side of the Sheet

sort
instance first

Me
accessors

second THEM
wins
loses

tie

1
-1

0

Java Comparable interface
Java Comparable interface is used to order the objects of the user-defined class. This interface is
found in java.lang package and contains only one method named compareTo(Object). It provides a
single sorting sequence only, i.e., you can sort the elements on the basis of single data member only.
For example, it may be rollno, name, age or anything else.

compareTo(Object obj) method
public int compareTo(Object obj): It is used to compare the current object with the specified object. It
returns:
• positive integer, if the current object is greater than the specified object.
• negative integer, if the current object is less than the specified object.
• zero, if the current object is equal to the specified object.

If you think I’m explaining it badly, try
the official documentation instead:

You won’t understand any better, but you
will appreciate my explanation more.

apple peach

apple peach

apple peach

	Slide 1: CompareTo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

