
Object Terminology
Why are objects important?



Objects:
• Group details 

together: data and 
methods that work 
on the data

• It is a programmer-
made type.



Class File
• The template for all 

of the variables 
that will be made 
using that type.

• It’s name is a type, 
the file name and 
the constructor’s 
name.



Instance 
Variables

Constructor

Mutator

Accessor

Facilitator

Objects have 
a lot of 

terminology



public class Item {

private double price;

private String name;

public double getPrice(){

return price;

}

public String getName(){

return name;

}

public String toString(){

return "The "+name+" costs $"+price;

}

public void setPrice(double p){

price = p;

}

public void setName (String n){

name = n;

}
public Item(){

price = 13.45;

name = "t-shirt";

}

public Item(double p, String n){

price = p;

name = n;

}

public boolean equals(Item i){

if(i.getName().equals(name) 

&& i.getPrice()==price)

return true;

else

return false;

}

public int compareTo(Item i){

//on the basis of price

if(i.getPrice()>price)

return -1;

else if (i.getPrice()==price)

return 0;

else

return 1;

}}



The Class lays out the 
data and the methods.

A variable uses the class 
as it’s type.



public void show(View view) {

TextView textArea = (TextView) findViewById(R.id.TextArea);

Item shoe = new Item(23.45, "flip-flops");

Item shirt = new Item();

textArea.append(""+shoe.toString ());

textArea.append("\n"+shirt.toString ());

textArea.append("\n"+shoe.getPrice ());

shirt.setPrice (100.98);

textArea.append("\n"+shirt.toString ());

textArea.append("\n" + shirt.compareTo(shoe));

textArea.append("\n" + shoe.equals(shirt));

}

public class Item {

double price;

String name;

public double getPrice(){

return price;

}

public String getName(){

return name;

}

public String toString(){

return "The "+name+" costs $"+price;

}

public void setPrice(double p){

price = p;

}

public void setName (String n){

name = n;

}

public Item(){

price = 13.45;

name = "t-shirt";

}

public Item(double p, String n){

price = p;

name = n;

}

public boolean equals(Item i){

if(i.getName().equals(name) 

&& i.getPrice()==price)

return true;

else

return false;

}

public int compareTo(Item i){

//on the basis of price

if(i.getPrice()>price)

return -1;

else if (i.getPrice()==price)

return 0;

else

return 1;

}}



But, why do we 
use objects?

They seem like 
pointless busy 

work.







Encapsulation
1. An object’s code is 

self-contained and 
independent of other 
code.

2. It relies only on itself.
3. Objects are easy to 

move around and use 
by other coders.

4. Objects are easy to 
update.



Encapsulation is 
essentially 

organization.

The independence of other 
code means that work can be 

divided in a large team.



Abstraction: 
• Makes it easy for 

other programmers to 
instantiate in their 
own programs.

• Allows other 
programmers to think 
of the problem at a 
higher, more removed 
level.



Abstraction

Coder who uses the class Coder who makes the class



With abstraction, using the class is easy because you don’t need 
to understand the details of how the class is implemented.



Remember last year? 
In the applets unit, 

you could use a 
JButton class with no 
knowledge of how to 

code it.

That was because 
JButton was an 

object coded in a 
class.

That’s 
Abstraction!



Information Hiding – removing details of the instance variables. 
The IV are private! They can only be used through accessors and mutators.



You can’t get at the variables in a class directly. It keeps the code more stable. Other 
coders, who might not understand your brilliant system, can’t easily mess with the 
variables. They are only allowed in via mutators and accessors.

Hidden 
Information


