
Unit 6 Test Review

1. What does OOP stand for? Object Oriented Programming

2. What does ADT stand for? Abstract Data Type

3. What does LIFO stand for? Last In First Out

4. What does FIFO stand for? First In First Out
5. Name 6 Stack functions Pop, push, peek, size, isFull,

isEmpty,

6. Name 6 Queue functions Dequeue, enqueue, peek,
size, isFull, isEmpty

7. Name 4 functions shared by queues
and stacks.

peek, size, isFull, isEmpty

8. Speed of all Stack Functions? O(1)
9. Speed of all Queue Functions? O(1)

10. Speed of binary search? O(log n)

11. Speed of quicksort? O(n log n)

12. Speed of merge? O(n)

13. Speed of mergesort? O(n log n)

14. Return type of toString? String

15. Return type of mutators? void

16. Return type of compareTo? Int

17. Return type of equals? Boolean

18. What is the name of variables inside
an Object’s class?

Instance variables

19. A keyword restricting variables access
to inside a class

Private

20. A method that is automatically called
when the variable’s name is printed

ToString

21. A method that checks if two objects
are the same

equals

22. A method that returns 1, 0, -1 CompareTo
23. The opposite keyword to private. Public

24. A template for an object or a type.
Also contains a java programs.

Class

25. An object method type that returns
the values of instance variables

Accessor

26. An object method type that sets up
dynamic memory.

Constructor

27. An object method type for methods
that don’t easily fit the other groups.

Facilitator

28. An object method type that sets aside
RAM for the instance variables and
initializes them.

Constructor

29. An object method that converts the
object to a String and returns it.

toString

30. An object method type that changes
the values of instance variables

Mutator

31. A non-primitive type Object

32. Data and methods that act upon data. Object

33. Programmers can think of a problem
at a higher more removed level.

Abstraction

34. Keeping an object’s code self-
contained and independent of other
code.

Encapsulation

35. Removing direct access to instance
variables from other programmers.

Information Hiding

36. Keeps the code stable. Information Hiding

37. Keeps the code moveable. Encapsulation

38. Keeps the code useable. Abstraction

39. Signs of Information Hiding 1 Private Instance variables
2 Mutators to change
instance variables
3 Access to view instance
variables

40. Signs of Abstraction 1 Easily represented by a
physical model or diagram
2 Code can be used without
reading more than signatures

41. Signs of Encapsulation 1 Easy to transfer and share
code
2 Easy to divide pieces among
team

42. Three uses of class name 1 File name to save as
2 Constructor name
3 Class name on class line

43. Three strange things about a
constructor

1 No return type on method
signature, it returns itself
2 Same name as class
3 Called using new

44. An ADT used to code an undo button Stack

45. An ADT used to code a line of people
at a grocery store

Queue

46. An ADT used for FIFO Queue

47. An ADT used for LIFO Stack

48. An ADT used to store recursive
method calls

Stack

49. An ADT used to store a back button. Stack

50. An ADT used to model cars on a road Queue

51. An ADT used to model loading an
airplane.

Queue

52. An ADT to hold print jobs for a printer Queue

53. An ADT to hold changes to a bank
account

Queue

54. An ADT that could model a pile of
books well.

Stack

55. An ADT where you add to the front
and remove from the front

Stack

56. An ADT where you add to the back and
remove them the front.

Queue

57. An ADT where you add to the front
and remove from the back

Queue

58. An ADT where you add to the back and
remove from the back.

Stack

59. An ADT where you add to the top and
remove from the top.

Stack

60. Stack tradeoff Positive: All functions O(1),
very fast
Negative: Only LIFO functions.
Speed is achieved through
limiting functionality

61. Queue tradeoff Positive: All functions O(1),
very fast
Negative: Only FIFO functions.
Speed is achieved through
limiting functionality

62. How do you switch a Queue to a
Queue of a Frog class?

Switch all Objects to Frog

63. Write code that declares 2 stacks Stack s = new Stack();
Stack s2 = new Stack();

64. Write code that declares a queue Queue q = new Queue();

65. Write code that prints out a stack while(! s.isEmpty())
 System.out.println(s.pop());

66. Write code that switches the top two
elements of a stack

Int holder = s.pop();
Int holder2 = s.pop();
s.push(holder);
s.push(holder2);

67. Write code that empties (and
reverses) one stack into another

while(!.s.isEmpty())
 S2.push(s.pop());

68. Write code that empties a queue (and
reverses) a queue into a stack

while (!q.isEmpty())
 s.push(q.dequeue());

69. How do you see the top element of a
stack?

System.out.println(s.peek());

70. What is half the size of a stack? s.size/2

