## **Binary Search**

### Searching in Sorted Arrays



A card for you to write.

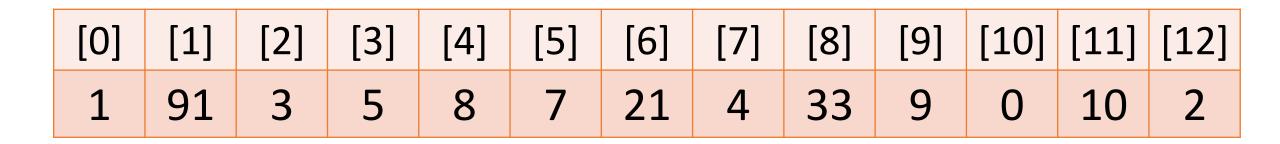
### Linear Search

- Searching is looking for the location of the item (index).
- Algorithm: Start at element 0. Continue until

   (a) you find it > return index (b) you reach the
   end > return -1.
- Speed: O(n).
- Trade-off: Slower search than binary, however it works on unsorted data.

### Linear Search #1

- Start at the beginning. Look at each element.
- Stop when:
- You find it.
- You get to the end. Return -1. It isn't there.

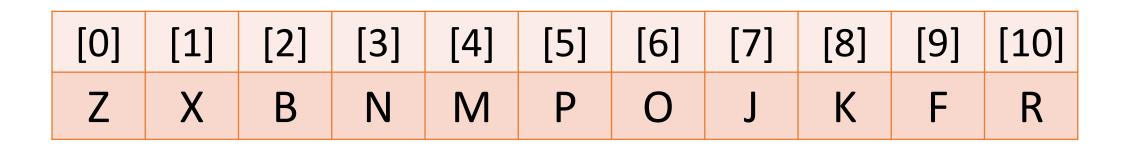




Start at the beginning. Look at each element.

Stop when:

- You find it.
- You get to the end. Return -1. It isn't there.



A card for you to write.

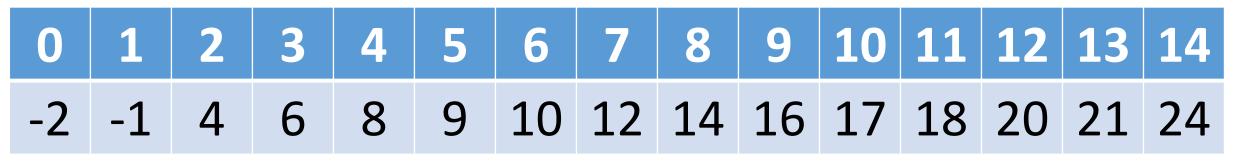
### **Binary Search**

- Can be coded recursively.
- Algorithm: Track the lowest and highest spot where the item might be. Search halfway, adjust.
- Speed: O(log n).
- Trade-off: Much faster search than linear search, however only works on sorted data.
- Uses the order of the data to speed up the search.



0

W



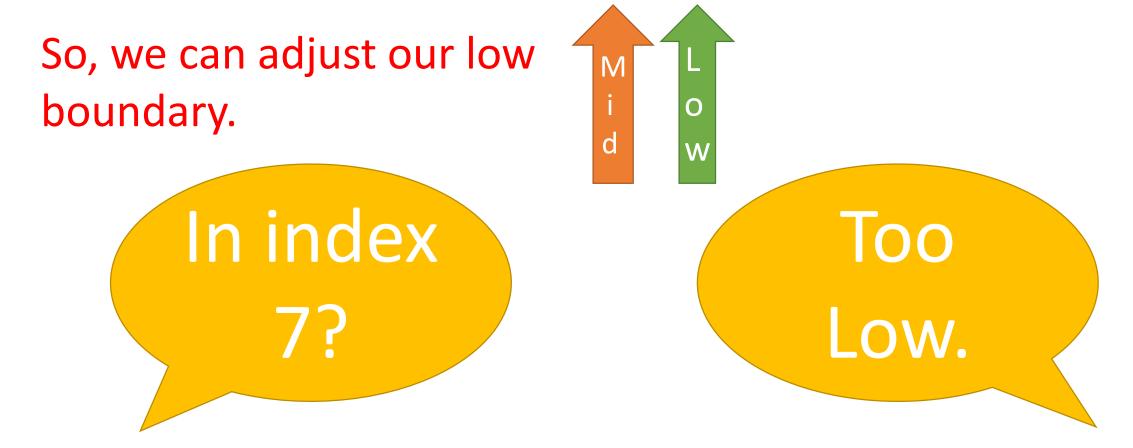




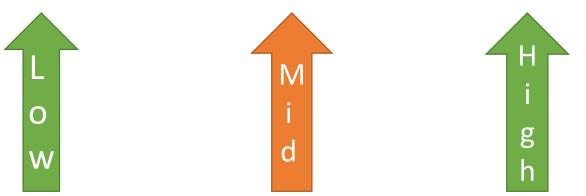




g









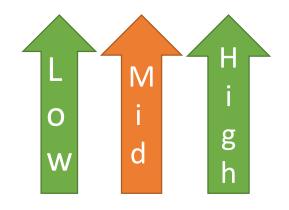
| 0  | 1  | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|
| -2 | -1 | 4 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | 18 | 20 | 21 | 24 |

So, we can adjust our high boundary.











| 0  | 1  | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|
| -2 | -1 | 4 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | 18 | 20 | 21 | 24 |

# So, we can adjust our high boundary.





| 0  | 1  | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|
| -2 | -1 | 4 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | 18 | 20 | 21 | 24 |



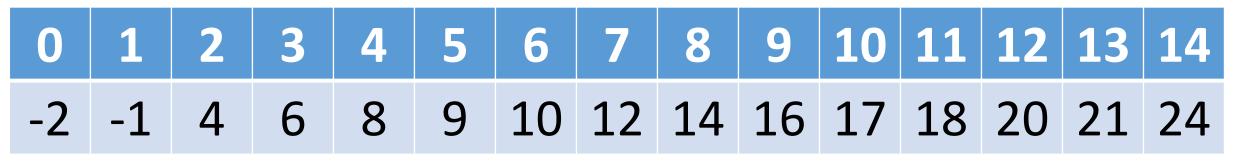






0

W





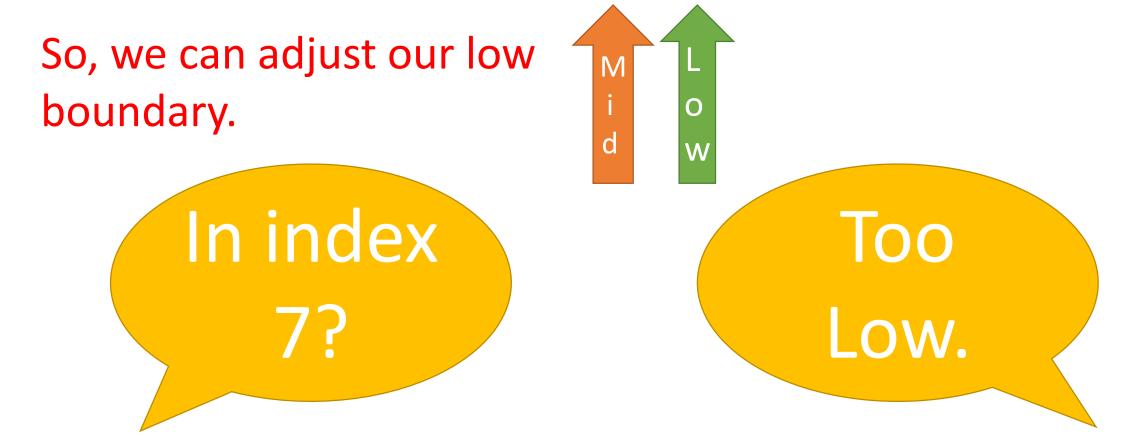
Н

g

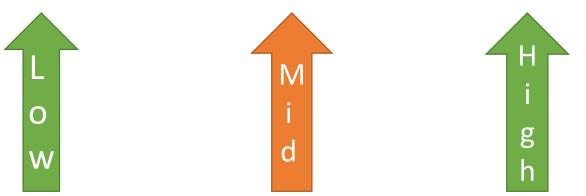




g





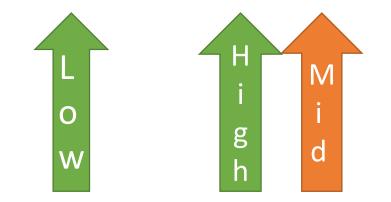




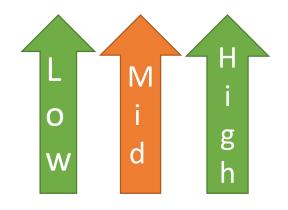
| 0  | 1  | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|
| -2 | -1 | 4 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | 18 | 20 | 21 | 24 |

So, we can adjust our high boundary.







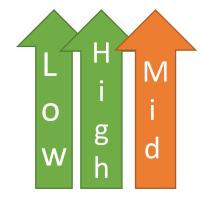




| 0  | 1  | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|
| -2 | -1 | 4 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | 18 | 20 | 21 | 24 |

# So, we can adjust our high boundary.





| 0  | 1  | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|
| -2 | -1 | 4 | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 17 | 18 | 20 | 21 | 24 |

So, we can adjust our high boundary.



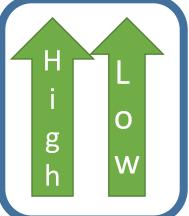


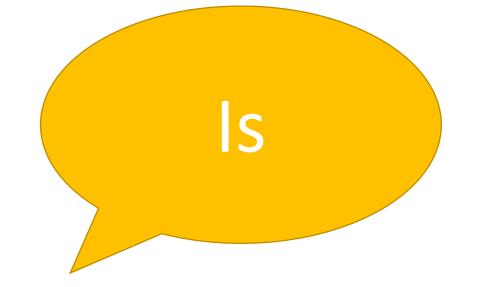


 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

 -2
 -1
 4
 6
 8
 9
 10
 14
 16
 17
 18
 20
 21
 24

# Out of order. It's not in either half. It's not there.







### Binary Search #1

Start Low at 0. Start High at a.length. Find mid. Look in that position.

- If too low, adjust low to (mid + 1)
- If too high, adjust high to (mid -1)
   Stop when:
- Mid is the right position.
- Low > High. Return -1. It isn't there.

| Low | High | Mid |
|-----|------|-----|
|     |      |     |
|     |      |     |
|     |      |     |
|     |      |     |
|     |      |     |

| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| -45 | -32 | -12 | -6  | 0   | 1   | 3   | 5   | 7   | 10  | 14   | 21   |

#### https://youtu.be/NjGSKXnaFz8

### Binary Search #2

Start Low at 0. Start High at a.length. Find mid. Look in that position.

- If too low, adjust low to (mid + 1)
- If too high, adjust high to (mid -1)
   Stop when:
- Mid is the right position.
- Low > High. Return -1. It isn't there.

| Low | High | Mid |
|-----|------|-----|
|     |      |     |
|     |      |     |
|     |      |     |
|     |      |     |
|     |      |     |

[7] [0] [1] [2] [3] [4] [5] [6] Zebra Bee Carrot Egg Mitt Pet Jam Apple

### https://youtu.be/79hlCibvntQ

### Binary Search #3

Start Low at 0. Start High at a.length. Find mid. Look in that position.

- If too low, adjust low to (mid + 1)
- If too high, adjust high to (mid -1)
   Stop when:
- Mid is the right position.
- Low > High. Return -1. It isn't there.

| Low | High | Mid |
|-----|------|-----|
|     |      |     |
|     |      |     |
|     |      |     |
|     |      |     |
|     |      |     |

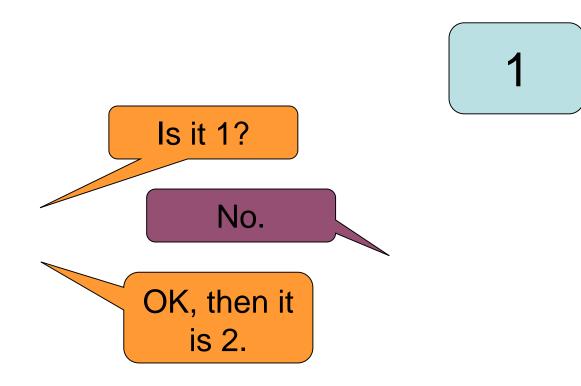
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| А   | В   | D   | Ε   | G   |     | К   | Μ   | Ν   | Q   | S    | U    | Ζ    |

#### https://youtu.be/Wo-mLpXL9aE

## Why is Binary Search O(logn)?

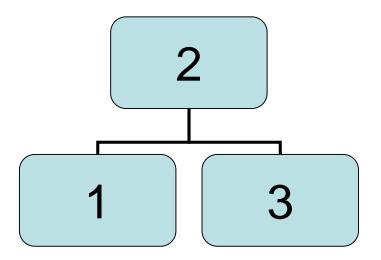
And why do you keep saying that is really fast?



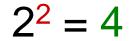


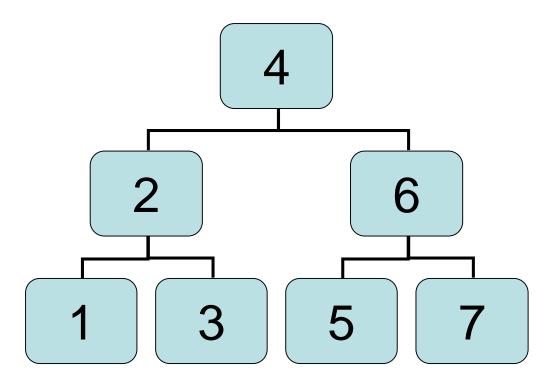
### Numbers 1 to 2 = 1 guesses.

 $2^{1} = 2$ 



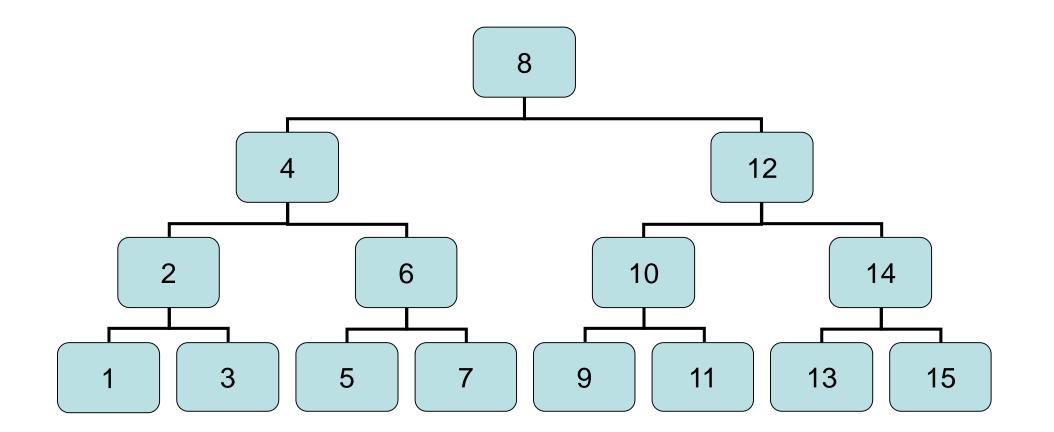
### Numbers 1 to 3 = 2 guesses.





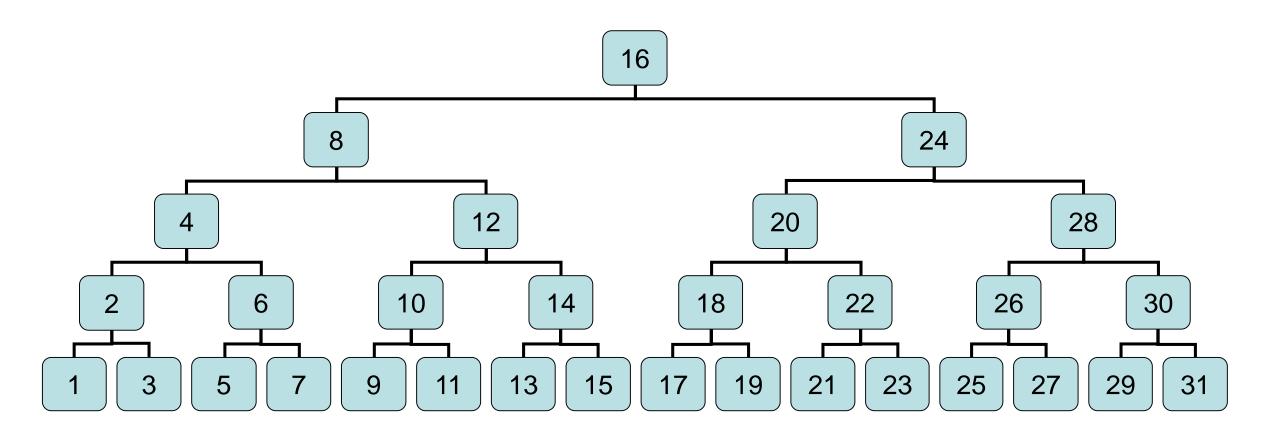
### Numbers 1 to 7 = 3 guesses.

 $2^{3} = 8$ 



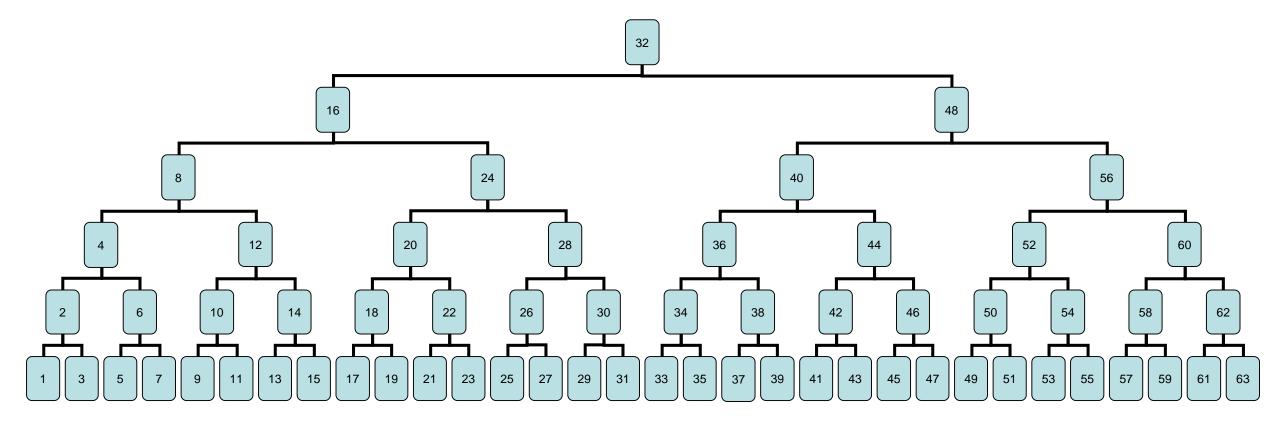
### Numbers 1 to 15 = 4 guesses.

 $2^4 = 16$ 



Numbers 1 to 31 = 5 guesses.

 $2^5 = 32$ 



Numbers 1 to 63 = 6 guesses.

 $2^6 = 64$ 

### Binary Search is Logarithmic

| Highest<br>Number (n) | Binary<br>Expression | Number of<br>Searches |                          |
|-----------------------|----------------------|-----------------------|--------------------------|
| 2                     | 2 <sup>1</sup> = 2   | 1                     | $log_{2}(2)=1$           |
| 3                     | 2 <sup>2</sup> = 4   | 2                     | $log_{2}(4)=2$           |
| 7                     | $2^{3} = 8$          | 3                     | $\log_2(8)=3$            |
| 15                    | 2 <sup>4</sup> = 16  | 4                     | log <sub>2</sub> (16)=4  |
| 31                    | $2^{5} = 32$         | 5                     | log <sub>2</sub> (32)=5  |
| 63                    | $2^{6} = 64$         | 6                     | log <sub>2</sub> (64)=6  |
| 127                   | 2 <sup>7</sup> = 128 | 7                     | log <sub>2</sub> (128)=7 |

### Binary Search is a lot faster

| C3 ▼ fx =CEILING(LOG(B3,2),1)+1 |              |            |            |
|---------------------------------|--------------|------------|------------|
|                                 | А            | В          | С          |
| 1                               | # of Records | Avg Linear | Max Binary |
| 2                               | 1            | 1          | 1          |
| 3                               | 10           | 5          | 4          |
| 4                               | 100          | 50         | 7          |
| 5                               | 1000         | 500        | 10         |
| 6                               | 10000        | 5000       | 14         |
| 7                               | 100000       | 50000      | 17         |
| 8                               | 100000       | 500000     | 20         |
| 9                               | 1000000      | 5000000    | 24         |
| 10                              | 10000000     | 5000000    | 27         |
| 11                              | 100000000    | 50000000   | 30         |
| 12                              | 1000000000   | 500000000  | 34         |

