
Binary Search
Searching in Sorted Arrays



Linear Search

• Searching is looking for the location of the 
item (index).
• Algorithm: Start at element 0. Continue until 

(a) you find it > return index (b) you reach the 
end > return -1.
• Speed: O(n).
• Trade-off: Slower search than binary, however 

it works on unsorted data.

A card for you to write.



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

1 91 3 5 8 7 21 4 33 9 0 10 2

Start at the beginning.
Look at each element.
Stop when:
• You find it.
• You get to the end. Return -1. It isn’t there.

Linear Search #1
https://youtu.be/xDBxVzkUk7E

https://youtu.be/xDBxVzkUk7E


[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Z X B N M P O J K F R

Start at the beginning.
Look at each element.
Stop when:
• You find it.
• You get to the end. Return -1. It isn’t there.

Linear Search #2 https://youtu.be/Wo-mLpXL9aE

https://youtu.be/Wo-mLpXL9aE


Binary Search

• Can be coded recursively.
• Algorithm: Track the lowest and highest spot 

where the item might be. Search halfway, adjust.
• Speed: O(log n).
• Trade-off: Much faster search than linear search, 

however only works on sorted data. 
• Uses the order of the data to speed up the 

search.

A card for you to write.





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
7?

Looking for 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

In index 
7?

Too 
Low.

So, we can adjust our low 
boundary.

M
i
d

Looking for 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
11?

Looking for 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
11? Too High.

So, we can adjust our high 
boundary.

Looking for 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
9? Too High.

Looking for 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
9? Too High.

So, we can adjust our high 
boundary.

Looking for 14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
8? Yes.

Looking for 14





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
7?

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

In index 
7?

Too 
Low.

So, we can adjust our low 
boundary.

M
i
d

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
11?

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
11? Too High.

So, we can adjust our high 
boundary.

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
9? Too High.

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
9? Too High.

So, we can adjust our high 
boundary.

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

M
i
d

In index 
8? No.

So, we can adjust our high 
boundary.

Looking for 13



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2 -1 4 6 8 9 10 12 14 16 17 18 20 21 24

L
o
w

H
i 
g
h

Is 
No.

Out of order. It’s not in 
either half. It’s not there.

Looking for 13



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

-45 -32 -12 -6 0 1 3 5 7 10 14 21

Low High Mid

Start Low at 0. Start High at a.length.
Find mid. Look in that position.
• If too low, adjust low to (mid + 1)
• If too high, adjust high to (mid -1)
Stop when:
• Mid is the right position.
• Low > High. Return -1. It isn’t there.

Binary Search #1
https://youtu.be/NjGSKXnaFz8

https://youtu.be/NjGSKXnaFz8


[0] [1] [2] [3] [4] [5] [6] [7]

Apple Bee Carrot Egg Jam Mitt Pet Zebra

Low High Mid

Start Low at 0. Start High at a.length.
Find mid. Look in that position.
• If too low, adjust low to (mid + 1)
• If too high, adjust high to (mid -1)
Stop when:
• Mid is the right position.
• Low > High. Return -1. It isn’t there.

Binary Search #2
https://youtu.be/79hlCibvntQ

https://youtu.be/79hlCibvntQ


[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

A B D E G I K M N Q S U Z

Start Low at 0. Start High at a.length.
Find mid. Look in that position.
• If too low, adjust low to (mid + 1)
• If too high, adjust high to (mid -1)
Stop when:
• Mid is the right position.
• Low > High. Return -1. It isn’t there.

Low High Mid

Binary Search #3
https://youtu.be/Wo-mLpXL9aE

https://youtu.be/Wo-mLpXL9aE


Why is Binary Search 
O(logn)?

And why do you keep saying that is really fast?



Numbers 1 to 2 = 1 guesses. 

21 = 2

1

Is it 1?

OK, then it 

is 2.

No.



2

1 3

Numbers 1 to 3 = 2 guesses. 

22 = 4



4

2 6

1 3 5 7

Numbers 1 to 7 = 3 guesses. 

23 = 8



8

4 12

10 142 6

1 3 5 7 9 11 13 15

Numbers 1 to 15 = 4 guesses. 

24 = 16



16

8 24

20 284 12

2 6 10 14 18 22 26 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Numbers 1 to 31 = 5 guesses. 

25 = 32



32

16 48

40 568 24

4 12 20 28 36 44 52 60

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Numbers 1 to 63 = 6 guesses. 

26 = 64



Binary Search is Logarithmic

Highest 

Number (n)

Binary 

Expression

Number of 

Searches

2 21 = 2 1 log2(2)=1

3 22 = 4 2 log2(4)=2

7 23 = 8 3 log2(8)=3

15 24 = 16 4 log2(16)=4

31 25 = 32 5 log2(32)=5

63 26 = 64 6 log2(64)=6

127 27 = 128 7 log2(128)=7



Binary Search is a lot faster




