1. Speed of swap	O(1)
2. Speed of find length of array	O(1)
3. Speed of find max	O(n)
4. Speed of selection sort	O(n^2)
5. Speed of bubble sort – best case	Close to O(n)
6. Speed of bubble sort – average case	O(n^2)
7. Speed of quick sort	O(n log n)
8. Speed of mergesort	O(n log n)
9. Speed of merge	O(n)
10. Speed of binary search	O(log n)
11. Speed of linear search	O(n)
12. Speed of bogosort	O(n!)
13. In Big-Oh notation, the O stands for	Order
14. In Big-Oh notation, the n stands for	Number of elements in the
	array
15. Which is faster: binary or linear search	Binary
16. Which is faster: searching or sorting	Searching
17. Which is faster: quicksort or mergesort?	Quicksort
18. Which is faster: bubblesort (average) or	Selection Sort
selection sort?	
19. Put the 4 sorts in order, fastest to slowest	Bubble (best case), Quick,
	Merge, Selection
20. Why is selection sort called selection	SELECTING best element
sort?	(max)
21. Why is quicksort called quicksort?	It is the QUICKEST.
	Purposeful swaps.
22. Why is mergesort called mergesort?	It divides the array into
	sorted arrays and MERGES
	them together
23. Why is bubblesort called bubblesort?	The billions of little swaps
	are like bubbles rising in
	рор.

24.	Why is binary search called binary	It splits the remaining part
search?		of the array in half. Halfing
		is based on 2 or BINARY
25.	Why is linear search called linear search?	It moves in a LINE down
		the array
26.	What is the hidden cost of binary search?	Data must be sorted AND
		sorting is a slow operation
27.	Why don't we measure algorithm speed	It is hardware dependent.
in	terms of seconds or time?	Big-Oh is based on the
		algorithm.
28.	Term for putting elements in order	Sorting
29.	Term for finding an element in an array	Searching
30.	Good hardware cannot compensate for	A bad algorithm
31.	Term for a series of steps that complete a	Algorithm
ta	sk	
32.	What is the fastest in-place algorithm in	Quicksort
th	e general case?	
33.	What is Quicksort's title?	Fastest in-place algorithm
		in the general case.
34.	Where is the pivot located at the start of	At the beginning of the
a	Quicksort partition?	array
35.	Where is the pivot located at the end of a	It is in its correct location.
Qı	uicksort partition?	
36.	At the end of a quicksort partition, what	Elements smaller than the
is	on the left of the pivot?	pivot
37.	At the end of a quicksort partition, what	Elements larger than the
is	on the right of the pivot?	pivot
38.	Which sorting algorithm is not "in-place"?	Mergesort
39.	What does "in-place" algorithm mean?	It uses swaps.
		It doesn't need extra
		memory.

40.	Which two sorting algorithms are	Quicksort and mergesort
re	cursive?	
41.	What are the two parts of mergesort?	Divide and merge
42.	What is the slowest sorting algorithm?	Bogosort
43.	Why is quicksort better than bubblesort?	More purposeful swaps.
		Moves to correct half of
		array.
44.	How do you know the element isn't in the	High < Low or Low > High
ar	ray in binary search?	
45.	Who invented Quicksort?	Tony Hoare
46.	Who invented Mergsort?	John Von Neumaan
47.	Who was a pioneer in AI research,	Alan Turing
de	eveloped the first computer and helped	
th	e allies win WWII?	
48.	Who made the documentary Secret rules	Marcus du Satouy
of	Modern living?	
49.	Who wrote down the first algorithm?	Euclid
50.	What was the first algorithm written	GCD (greatest common
do	own?	divisor)
51.	Who wrote that good hardware cannot	Jon Bentley
СС	ompensate for a slow algorithm?	
52.	(Secret Rules Documentary) What group	Mathematicians
de	eveloped the first algorithms?	
53.	(Secret Rules Documentary) What group	Programmers
de	eveloped in the 1960s?	
54.	(Secret Rules Documentary) What group	AI (Machine Learning)
de	evelops algorithms now?	
55.	(Secret Rules Documentary) Who were	Mathematicians
th	e first algorithms written for?	
56.	(Secret Rules Documentary) Who were	Computers
th	e algorithms written for in the 1960s?	
57.	(Secret Rules Documentary) Who are	Humans
al	gorithms written for now?	

58.	First sorting algorithm CODED	Bubble sort
59.	First sorting algorithm CREATED	Mergesort
60.	What is the first test to determine which	Almost sorted. Use
SC	orting algorithm to use?	Bubble.
61.	What is the second test to determine	Random order. Use Quick.
W	hich sorting algorithm to use?	
62.	What is the third test to determine which	Enough memory. Use
SC	orting algorithm to use?	Merge
63.	What is the first test to determine which	Sorted? Use Binary
se	earching algorithm to use?	Not Sorted? Use Linear
64.	Put the sorting speeds in order, fastest to	O(1), O(log n), O(n), O(n
sl	owest	log n), O(n^2), O(n^3),
		O(n!)
65.	Positive of Quicksort	Really fast. O(n log n)
66.	Negative of Quicksort	Complex. Only for random
		data.
		Reverse order or Almost
		sorted = bad
67.	Positive of Mergesort	Really fast. O(n log n)
68.	Negative of Mergesort	Requires extra memory
69.	Positive of Bubble sort	If almost sorted, close to
		O(n). That's fast
70.	Negative of Bubble sort	In all other cases, slow
		O(n^2). A lot of swaps.
71.	Positive of Selection sort	Easy to understand. Based
		on max.
72.	Negative of Selection sort	Slow. Simplicity isn't
		efficient.
73.	Positive of Binary search	Fast. Really fast. O(log n)
74.	Negative of Binary search	Requires sorted data.
		Sorting is slow.
75.	Positive of Linear search	Works even for unsorted
		data

76.	Negative of Linear search	Slower than binary search.
77.	What is the edge guard for i-1?	i-1 >=0
78.	What is the edge guard for i+1?	i+1 <row< td=""></row<>
79.	What is the edge guard for j-1?	j-1>=0
80.	What is the edge guard for j+1?	j+1 <col< td=""></col<>
81.	What is the outer for loop for a coding	for(int i=0; i <row; i++)<="" td=""></row;>
qı	uestion?	
82.	What is the inner for loop for a coding	for(int j=0; j <col; j++)<="" td=""></col;>
qı	uestion?	
83.	Which way is the row?	Horizontal (i)
84.	Which way is the column?	Vertical (j)
85.	If the actionCommand is n, what is the	n/col
rc	w?	
86.	If the actionCommand is n, what is the	n%col
СС	olumn?	