
ICS4U – Unit 2 – Methods Review

Overall Methods Pieces

1. Add one to a variable named a a++
2. Subtract one from a variable named b b--
3. If you have the code a=b, which

changes, a or b?
A

4. The name of the first line of the
method?

Method signature

5. A subprogram A method
6. The name of the thing that is sent back

from the method?
Return type

7. The name of the output of the method Return type
8. The name of the input of the method Parameter
9. Why is a method signature important? It contains all of the information needed to

call the method: (1) return type, (2) name,
(3) parameters.

10. The name of the things that are sent
into the method

Parameter

11. The position of the return type in the
method signature

Second word, right after public.

12. What is the in the brackets of the
method signature?

Parameter

13. The position of the method name in the
method signature

Third word.

14. The opening word of the method
signature

Public

15. The position of the parameter type in
the method signature

First word in the brackets.

ORATE

16. What does ORATE stand for? Organization
Reusability
Abstraction
Testing
Extensibility

17. What does ORATE represent? The reasons why methods are useful.
18. Define organization from ORATE Breaks up code into smaller logical units.
19. Define reusability from ORATE Instead of copy/pasting code, call the

method.
20. Define abstraction from ORATE To use a method, no understanding is

needed.
Just call it using signature.

21. Define testing from ORATE Repeated code has more lines AND more
white box test cases.
Methods reduce code AND white box
testing.

22. Define extensibility from ORATE Methods mean that future changes can
occur in one place.
If code is repeated, changes also need
repeating.

23. What is an example of abstraction from
ORATE?

IO.
String methods.
You didn’t understand it, but could call it.

24. What is an example of reusability from
ORATE?

Pizza Party button rolls.
You used one method for all 5 buttons

25. What is an example of organization
from ORATE?

The screens in your current project
Each screen is sent up in a separate
method. This keeps all of its code together
and make it easy to find.

Recursive Applications

26. What is a method that calls itself? Recursion
27. What are the first nine terms of the

Fibonacci sequence?
1, 1, 2, 3, 5, 8, 13, 21, 34

28. Where does the Fibonacci sequence
appear in nature?

1. Proportions of turns in a seashell
2. Proportions of a beautiful face
3. Number of seeds in a spiral of a flower
4. Reproduction patterns of rabbits

29. What is the base case of the Fibonacci
sequence?

First term = 1, second term = 1

30. What is the recursive case of the
Fibonacci sequence?

Term n is the two previous terms added
together

31. What is 1! (one factorial) 1
32. What is 2! (two factorial) 2
33. What is 3! (three factorial) 6
34. What is 4! (four factorial) 24
35. What is 5! (five factorial) 120
36. What is the base case of factorial? The first factorial is 1
37. What is the recursive case of factorial? The nth factorial is the previous factorial *

n
38. A use of factorials in math. Probability calculations
39. A recursive picture A fractal
40. A use of a fractal CGI – computer generated images

Textures (fur, wood grain)
Natural shapes (trees, leaves)

41. When would you use recursion and not
a loop?

Sorting.
Recursive sorts are fastest.

42. When would you use a loop and not
recursion?

Printing a sequence.
Loops are faster than recursion.

43. Which is easier to learn: loops or
recursion

Loops

44. When sorting, which is best, loops or
recursion

Recursion

45. What can all recursive methods be
coded as?

Loop

46. What can all loops be coded as? Recursion

Recursion Vs Loops

47. The recursive equivalent of a
loop stopping variable.

Parameter

48. The recursive equivalent of a
loop stopping condition.

Base case

49. The recursive equivalent of the
loop’s steps to repeat.

Recursive

50. The recursive equivalent of an
infinite loop

Stack Overflow Error

51. The loop equivalent of a
recursive parameter

Loop stopping variable

52. The loop equivalent of a
recursive base case

Loop stopping condition

53. The loop equivalent of a
recursive case in a method

Steps to repeat

54. The loop equivalent of a stack
overflow error

Infinite loop

55. What are two parts of a
recursive method?

1. Base case
2. Recursive case

56. What is a base case used for? 1. Stops the recursion.
2. Returns the first value that all others build on

57. What is a recursive case use
for?

1. Reduces the problem using a smaller
parameter
2. Repeats by calling itself

58. Why does recursion have to be
in a method?

1. Recursion needs to call a smaller version of
itself.
2. This is needed to move the base case AND to
repeat.
3. The way you “call” yourself is using a
method.

59. Why does recursion need an if? 1. Recursion has two pieces: a base case and
recursive case.
2. To CHOOSE between them, we need an if.

60. Why does recursion need a
parameter?

1. Parameters get smaller in the recursive case.
2. When they are small, the recursion stops
3. Thus, parameters control the number of
times the code is repeated.

String Functions (Return Types and Parameter Types)

61. Return type of charAt char

62. Return type of toUpperCase String

63. Return type of replace String

64. Return type of length int

65. Return type of indexOf int

66. Return type of substring String

67. Return type of compareTo int

68. Return type of equals boolean

69. Parameter type of charAt int

70. Parameter type of toUpperCase none

71. Parameter type of replace char

72. Parameter type of length none

73. Parameter type of indexOf char

74. Parameter type of substring int

75. Parameter type of compareTo String

76. Parameter type of equals String

