Bin Sort

A quirky sorting algorithm

» int bin[] = {0, 0, 0, 0}:

for (int i = 0 : i < a.lenath : i++4){

Declare the bin array. min 2 (1114

}

int index = 0;
int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = bin [1]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

111(2{0{2131013]0]3]3]|1

The Bin Array:
0] [1] [2] [3]

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :
0] [1] [2] [3] [4] [5] [6] [7] [8] 9] [10] [11]

1011210{213]10[3/0]3[3/1

The Bin Array:
0] [1] [2] [3]

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :
0] [1] [2] [3] [4] [5] [6] [7] [8] 9] [10] [11]

1011210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

0]1/0{0

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :
0] [1] [2] [3] [4] [5] [6] [7] [8] 9] [10] [11]

1(11210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

0]2|0{0

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :
0] [1] [2] [3] [4] [5] [6] [7] [8] 9] [10] [11]

1011210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

0]2|1{0

int bin[] = {0, 0, 0, 0}:

for (int i = 0 : i < a.lenath : i++4){

Go through the array and = AR

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1(11210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

112|1{0

int bin[] = {0, 0, 0, 0}:

for (int i = 0 : i < a.lenath : i++4){

Go through the array and = AR

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1011210{21310[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

112|2{0

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1(11210{213]10[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

11212(1

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1(11210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

212|2(1

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1011210{213]10[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

212|2(2

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1011210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

312|2(2

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1(11210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

312123

int bin[] = {0, 0, 0, 0}:

Go through the array and Y R il

}

r] : int index = 0;
Count t e |tems. int counter = 0;
for (int i =0 ; 1 € 4 ; i++){
counter = pbin ([1i]:
while (counter > 0){
a [index] = 1i:
counter--;
index++;
}

The Array to be Sorted: :

oy [l 2 31 [4 (51 6] [7 [8] [9] [10] [11]

1011210{213]0[3/0]3[3[1

The Bin Array:
0] [1] [2] [3]

312|2(4

int bin[] = {0, 0, 0, 0}:

Erase the old array and print T T T
out the correct number of e e

" counter = bin [i]:
eaCh Item. » whil: E:Eg:;?a'::}i?l{

counter--;

index++;
}

The Array to be Sorted: :
0] [1] [2] [3] [4] [5] [6] [7] [8] 9] [10] [11]

111(2{0{2131013]0]3]3]|1

The Bin Array:
0] [1] [2] [3]

313|12(4

Erase the old array and print
out the correct number of
each item. =

The Array to be Sorted:
0] [1] [2] [3] [4] [5] [6] [7] [8]

The Bin Array:
0] [1] [2] [3]

3030202

int bin[] = {0, 0, 0, 0}:

for (int i = 0 : i < a.lenath : i++4){
bin [a [1]]++:
}

int index = 0;
int counter = 0;
for (int 1 =0 ; 1 € 4 ; i++){
counter = bin ([i]:
while (counter > 0){
a [index] = i;
counter--;
index++;
}
}

o1 [10] [11]

Erase the old array and print
out the correct number of
each item.

-

The Array to be Sorted:
0] [1] [2] [3]

41 51 [6] (7] [8]

The Bin Array:
0] [1] [2] [3]

3030202

int bin[] = {0, 0, 0, 0}:

for (int i = 0 : i < a.lenath : i++4){
bin [a [1]]++;
}

int index = 0;
int counter = 0;

for (int 1 =0 ; 1 € 4 ; i++){

counter = bin ([i]:
while (counter > 0){
a [index] = i;
counter--;
index++;
}
}

o1 [10] [11]

int bin[] = {0, 0, 0, 0}:

Erase the old array and print T T T
out the correct number of e T

" counter = bin [i]:
eaCh Item. » whil: Egﬁg:;?a'::}i?l{

counter--;

index++;
}

The Array to be Sorted: :

o] (1] [2] [3] [4] [5] el [71 8] [9] [10] [11]

The Bin Array:
0] [1] [2] [3]

3030204

int bin[] = {0, 0, 0, 0}:

Erase the old array and print T T T
out the correct number of e e

" counter = bin [i]:
eaCh Item. » whil: Egﬁg:;?a'::}i?l{

counter--;

index++;
}

The Array to be Sorted: :

o (1] (2] 3] [4] [5] (6] (7] [8] [9] [10] [11]
0[{0[0[111]112]2

The Bin Array:
0] [1] [2] [3]

3030204

int bin[] = {0, 0, 0, 0}:

Erase the old array and print T T T
out the correct number of e e

" counter = bin [i]:
eaCh Item. » whil: E:Eg:;?a'::}i?l{

counter--;

index++;
}

The Array to be Sorted: :
0] [1] [2] 3] [4] [5] [6] [7] 8] 9] [10] [11]

0[{0[0f111]112]2]3]3[3[3

The Bin Array:
0] [1] [2] [3]

3031204

puklic cla=zs binsort

public static woid main (String argsi([])

{

}

new kinsort ():

public binsort ()

{

int a[] = {2, 3, 1, 1, 0, 1, 3, 0O, 2,

gyvastem.out.println ("The array before:

printarray (a);

int kin[] = {0, O, 0, O}:

for (int 1 =0 ; i € a.length ; i+4)
bin [a [L]]++:

int index = 0O;

int counter = 0;

for (int 1 =0 ;» 41 < 4 ;7 i+4)
counter = kin [i]:

while ([counter > 0)
{

g [index] = 1;
counter—--:
index++;
}
K
System.out.println ("The array after:

printarray (a);

2}:

lr:lr-

II];

Bin Sort Algorithm

**Circle and label each of these steps in the
adjacent code®*

0. Look at the array-to-sort (it is named ‘a")
What numbers are in it?

1. Declare your bins in an array. Allocate
an element for each number in the array-
to-sort.

2. Go through the array-to-sort, counting
the how many times each number appears.
Store the count in the bins.

bin[] | [0] [1] [2] [3]

3. Use the bin array to re-make the array-
to-sort. Use the count in each bin to fill the
appropriate number of elements.

4, Print the sorted array.

puklic cla=zs binsort

public static woid main (String argsi([])

{
new kinsort ():

}

public binsort ()
1

0 |_in1: a[] = {2, 3, 1, 1

l, 3, 0, 2,

0
L [
gvastem.out.println ("The
printarray (a);

int kin(] = {0, 0, O, O}:

array before:

for (int 1 =0 ; i € a.length ; i+4)

bin [a [1i]]++:

int index = 0O
int counter = {;
for (int 1 =0 ; 1 < 4 ;

counter = kin [i]:
while ([counter > 0)
{

g [index] = 1;
counter—--:
index++;
}
K
gyastem.out.println ("The

printarray (a);

it++)

array after:

II];

Bin Sort Algorithm

**Circle and label each of these steps in the
adjacent code®*

0. Look at the array-to-sort (it is named ‘a")
What numbers are in it?

0,12, 3.

1. Declare your bins in an array. Allocate
an element for each number in the array-
to-sort.

2. Go through the array-to-sort, counting
the how many times each number appears.
Store the count in the bins.

bin[] | [0] [1] [2] [3]

3. Use the bin array to re-make the array-
to-sort. Use the count in each bin to fill the
appropriate number of elements.

4, Print the sorted array.

puklic cla=zs binsort

public static woid main (String argsi([])

{
new kinsort ():

}

public binsort ()
1

0 |_in1: a[] = {2, 3, 1, 1

l, 3, 0, 2,

0
L [
gvastem.out.println ("The
printarray (a);

array before:

1 int kin[] = {0, 0, 0, 0}:

for (int 1 =0 ; i € a.length ; i+4)

bin [a [1i]]++:

int index = 0O
int counter = {;
for (int 1 =0 ; 1 < 4 ;

counter = kin [i]:
while ([counter > 0)
{

g [index] = 1;
counter—--:
index++;
}
K
gyastem.out.println ("The

printarray (a);

it++)

array after:

II];

Bin Sort Algorithm

**Circle and label each of these steps in the
adjacent code®*

0. Look at the array-to-sort (it is named ‘a")
What numbers are in it?

0,12, 3.

1. Declare your bins in an array. Allocate
an element for each number in the array-
to-sort.

2. Go through the array-to-sort, counting
the how many times each number appears.
Store the count in the bins.

bin[] | [0] [1] [2] [3]

3. Use the bin array to re-make the array-
to-sort. Use the count in each bin to fill the
appropriate number of elements.

4, Print the sorted array.

puklic cla=zs binsort

public static woid main (String argsi([])

{
new kinsort ():

}

public binsort ()
1

0 |_in1: a[] = {2, 3, 1, 1

l, 3, 0, 2,

0
L [
gvastem.out.println ("The
printarray (a);

array before:

1 int kin[] = {0, 0, 0, 0}:

bin [a [1i]]++:

for (int 1 =0 ; i € a.length ; i+4)

int index = 0O
int counter = {;
for (int 1 =0 ; 1 < 4 ;

counter = kin [i]:
while ([counter > 0)
{

g [index] = 1;
counter—--:
index++;
}
K
gyastem.out.println ("The

printarray (a);

it++)

array after:

II];

Bin Sort Algorithm

**Circle and label each of these steps in the
adjacent code®*

0. Look at the array-to-sort (it is named ‘a")
What numbers are in it?

0,12, 3.

1. Declare your bins in an array. Allocate
an element for each number in the array-
to-sort.

2. Go through the array-to-sort, counting
the how many times each number appears.
Store the count in the bins.

binll [I0] [[1 [[I3]
21 3] 3] 2

3. Use the bin array to re-make the array-
to-sort. Use the count in each bin to fill the
appropriate number of elements.

4, Print the sorted array.

puklic cla=zs binsort

public static woid main (String argsi([])
{
new kinsort ():

}

public binsort ()
1

0 |_in1: a[] = {2, 3, 1, 1

o, 1, 3, 0, 2,

L
Syvastem.out.println ("Th
printarray (a);

array before:

-
a
el g

1 int kin[] = {0, 0, 0, 0}:

for (int 1 =0 ; i € a.length ; i+4)

2 {
I

bin [a [1i]]++:

int index =
3 int counter
for (int 1 =0 i< 4 ;7 i+s)
counter = kin [i]:

while ([counter > 0)

{

g [index] = 1;
counter—--:
index++;
}
K
gystem.out.println ("The array after: "):

printarray (a);

Bin Sort Algorithm

**Circle and label each of these steps in the
adjacent code®*

0. Look at the array-to-sort (it is named ‘a")
What numbers are in it?

0,12, 3.

1. Declare your bins in an array. Allocate
an element for each number in the array-
to-sort.

2. Go through the array-to-sort, counting
the how many times each number appears.
Store the count in the bins.

binll [I0] [[1 [[I3]
21 3] 3] 2

3. Use the bin array to re-make the array-
to-sort. Use the count in each bin to fill the
appropriate number of elements.

0]0)1}111]2(2|2|3|3

4. Print the sorted array.

puklic cla=zs binsort

public static woid main (String argsi([])
{
new kinsort ():

}

public binsort ()
1

0 |_in1: a[] = {2, 3, 1, 1

o, 1, 3, 0, 2,

L
Syvastem.out.println ("Th
printarray (a);

array before:

-
a
el g

1 int kin[] = {0, 0, 0, 0}:

for (int 1 =0 ; i € a.length ; i+4)

2 {
I

bin [a [1i]]++:

int index =
3 int counter
for (int 1 =0 i< 4 ;7 i+s)
counter = kin [i]:

while ([counter > 0)

{

g [index] = 1;
counter—--:
index++;
}
K
gyvatem.out.println ("The arrayv after: "):

4 printarray (aj):

Bin Sort Algorithm

**Circle and label each of these steps in the
adjacent code®*

0. Look at the array-to-sort (it is named ‘a")
What numbers are in it?

0,12, 3.

1. Declare your bins in an array. Allocate
an element for each number in the array-
to-sort.

2. Go through the array-to-sort, counting
the how many times each number appears.
Store the count in the bins.

binll [I0] [[1 [[I3]
21 3] 3] 2

3. Use the bin array to re-make the array-
to-sort. Use the count in each bin to fill the
appropriate number of elements.

0]0)1}111]2(2|2|3|3

4. Print the sorted array.

Bin Sort Characteristics

Bin sort cheats! It is a specialized sort made
for a very specific situation. It gains it's

speed by being specialized.
Bin sort also requires extra memory for the
bins,

Bin sort also deoesn't preserve the data and
swap it around. It erases it and starts over,
Bin sort speed =

Bin sort only works for
type data that falls in a range.

It cannot be used with .
L ar data.

Bin Sort Characteristics

Bin sort cheats! It is a specialized sort made
for a very specific situation. It gains it's

speed by being specialized.
Bin sort also requires extra memory for the
bins,

Bin sort also deoesn't preserve the data and
swap it around. It erases it and starts over,

Bin sort speed = __O(N)
Bin sort only works for
type data that falls in a range.

It cannot be used with .
L ar data.

Bin Sort Characteristics

Bin sort cheats! It is a specialized sort made
for a very specific situation. It gains it's

speed by being specialized.
Bin sort also requires extra memory for the
bins,

Bin sort also deoesn't preserve the data and
swap it around. It erases it and starts over,

Bin sort speed = __O(N)
Bin sort only works for __positive _int
type datathatfallsina _small range.

It cannot be used with .
L ar data.

Bin Sort Characteristics

Bin sort cheats! It is a specialized sort made
for a very specific situation. It gains it's

speed by being specialized.
Bin sort also requires extra memory for the
bins,

Bin sort also deoesn't preserve the data and
swap it around. It erases it and starts over,
Bin sort speed = __O(N)

Bin sort only works for __positive _int
type datathatfallsina _small range.

[t cannot be used with _double ,
char ,or String data.

1. Trace Bin Sort on the following arrays:

(a) Starting Array:
oy | [1] | 2] [(3] | [4] | [5] | [6] | [7] | [8] | [9] |[10]| [11]|[12]|[13] | [14]
1 2 + 0 3 + 3 2 1 2 3 + 0 0 1
Bins:
0] (1] (4]
Final Array:
oy | [1] | 2] [(3] | [4] | [5] | [6] | [7] | [8] | [9] |[10]]| [11]|[12]|[13] | [14]

1. Trace Bin Sort on the following arrays:

(a) Starting Array:
oy | [1] | 2] [(3] | [4] | [5] | [6] | [7] | [8] | [9] |[10]| [11]|[12]|[13] | [14]
1 2 + 0 3 + 3 2 1 2 3 + 0 0 1
Bins:
0] (1] (4]
3| 3
Final Array:
oy | [1] | 2] [(3] | [4] | [5] | [6] | [7] | [8] | [9] |[10]]| [11]|[12]|[13] | [14]

1. Trace Bin Sort on the following arrays:

(a) Starting Array:

oy | [1] | 2] [(3] | [4] | [5] | [6] | [7] | [8] | [9] |[10]| [11]|[12]|[13] | [14]
1 2 + 0 3 + 3 2 1 2 3 + 0 0 1
Bins:

0] (1] (4]

3| 3
Final Array:

oy | [1] | 2] [(3] | [4] | [5] | [6] | [7] | [8] | [9] |[10]]| [11]|[12]|[13] | [14]
o0 0} 21|1 1| 2|22 |33 |3|4,4)| A4

Which
sorting
algorithm

should you
use’?

Start

Int data in a
small range?

false

Almost
sorted?

false

Selection sort

true

Bin sort

Bubble sort

You have an
array of
doubles in

reverse
order.

Start

Int data in a
small range?

false

Almost
sorted?

false

true

Bin sort

Bubble sort

